This work is licensed under <u>CC-BY 4.0 International</u>.

Introduction to Bioimage Analysis using QuPath

Antoine A. Ruzette & Simon F. Nørrelykke

Image Analysis Collaboratory

Image Analysis Collaboratory - QuPath workshop

Get the course materials

https://hms-iac.github.io/qupath-workshop

One-stop resource for everything we'll cover today

Let's start the download an example image

- 1. Browse to the workshop website >
- 2. Download the .vsi whole-slide image
- 3. Once done, unzip it
- 4. Save it
- 4. Right-click on the installer file > Open > Confirm Open

Workshop plan

- 1. Introduction to digital image analysis
- 2. Installing QuPath and your first project
- 3. GUI layout and toolbars
- 4. Introducing objects: annotations and detections
- 5. Saving, sharing and receiving QuPath projects
- 6. Nuclei detection and measurements (incl. StarDist)
- 7. Cell classification
- 8. Automating tissue annotations (pixel classifier)
- 9. Advance topic: scripting and workflows

Acknowledgments

- Pete Bankhead et al.
 - QuPath and its amazing documentation
- Peter Sobolewski
 - Introduction to QuPath workshop at the The Jackson Laboratory

Nina Kozlova

• Whole-slide image used in this workshop

Self-introductions

- 1. My **name** is Antoine
- 2. My **position** is as an Associate in Systems Biology
- 3. My lab is the Image Analysis Collaboratory and the Megason Lab
- 4. I have confocal microscopy **images** of cancer tissues, embryos, ...
- 5. A fun fact about me is *l* used to be a brewer

Self-introductions

- 1. Motivate the use of algorithms in image analysis
- 2. Introduce some image-analysis nomenclature
- 3. Learn to use QuPath effectively and reproducibly

Reasons to learn image processing

- Make pretty pictures (processing)
 - publications, talks, websites, ...
- Get numbers out of pictures (analysis)
 - cell sizes, vessel lengths, GPF expression level, ...
- Make experiment possible (automation)
 - whole-genome screen: millions of images
- Objectivity and Reproducibility
 - in science, it's your duty!

Reasons not to learn image processing

none

Why should we analyze images with computers at all?

Color perception and pattern recognition is individual – science less so

https://www.moillusions.com/perfect-circles-optical-illusion/

http://www.brainbashers.com

Color perception and pattern recognition is individual – science less so

https://www.moillusions.com/perfect-circles-optical-illusion/

http://www.brainbashers.com

In other words,

"Each human brain is a very complex neural network trained on different data – predictions will vary" Antoine

A typical image analysis workflow

- There are typically *five* steps in an image analysis
- Often a good idea to structure work along these lines before starting

Think of this even *before* you acquire the images!

otherwise image analysis may become only a *post-mortem* on your experiment

Image processing vs analysis

Image Formation object in \rightarrow image out

Image Processing image in → image out

Image A	Analy	/sis			Cor	npute
image in 🗕	feat	tures of	ut	1	numbe	ers in
	Obj 1 2 3 4 5 6 7	Area 324.2 406.7 487.1 226.3 531.8 649.5 582.6 498.0	Perim 98.5 140.3 159.2 67.8 187.6 203.1 196.4 162.9	X -3.54 -2.78 -1.15 0.45 1.83 2.98 4.21	Y -2.32 -1.90 0.42 1.65 2.18 3.33 3.96	I 0.50 0.12 3.09 5.89 7.72 2.07 -4.58
	9	543.2	195.1	7.16	5.02	-3.63

er Graphics → image out

Computer Vision image in \rightarrow interpretation out

Visualization image in \rightarrow representation out

What is an image?

A digital image is a matrix of numbers!

Pixel = Picture Element

Images in publications and presentations should be used to **communicate** a finding... not **be** the finding

this is your data

6	13	19	6	19	13	9	19	9	6	9	6	16	16	6	16	13	132	229	103	19	16	13	23	9	9
19	19	6	13	13	13	13	16	16	19	9	13	9	6	16	16	49	192	216	106	23	13	16	16	23	13
13	9	4	13	13	16	19	36	66	93	79	26	13	13	6	16	113	209	196	113	29	19	36	49	36	33
19	13	19	13	16	13	26	89	123	136	152	116	76	33	13	46	159	162	159	126	79	96	189	229	226	212
16	16	9	6	13	19	26	93	156	179	106	66	79	136	106	152	179	93	29	13	16	23	79	156	123	49
16	6	13	13	16	13	23	69	103	69	19	16	6	109	209	236	179	43	9	16	9	13	13	19	13	13
9	9	16	19	13	13	19	13	26	16	16	13	6	103	179	189	132	33	19	16	16	9	9	6	6	6
13	9	4	13	13	13	16	19	13	23	6	16	23	123	186	192	169	126	26	16	19	13	6	13	16	13
13	13	9	16	9	6	13	19	16	19	6	19	63	199	192	106	29	149	162	113	119	53	9	13	6	13
13	9	16	6	6	19	13	9	23	13	9	6	119	182	149	36	6	39	196	196	176	73	16	9	9	9
6	19	13	9	19	16	13	13	19	9	9	23	142	179	109	13	16	9	39	59	23	19	13	4	9	9
19	13	9	9	16	16	16	9	9	13	6	66	169	172	43	16	9	9	9	13	13	19	16	16	16	9
9	9	6	9	13	9	6	13	4	9	19	116	196	89	9	9	16	16	19	19	9	16	6	16	9	9
13	13	9	23	19	13	9	9	9	6	26	159	219	59	23	9	13	9	6	13	6	19	16	13	16	13
9	23	13	6	6	23	9	19	13	16	66	206	179	13	6	16	13	13	13	16	9	13	9	9	16	13
13	13	23	16	19	19	6	9	19	13	142	255	103	19	13	6	19	9	16	9	16	9	16	13	23	9
6	13	23	9	13	16	13	6	9	53	229	246	39	9	13	13	13	13	9	9	19	13	16	13	13	13
13	19	59	76	26	9	16	16	13	99	249	142	6	19	13	13	13	13	19	4	13	13	6	26	9	13
16	113	229	219	93	9	26	83	23	159	219	59	9	9	6	13	16	13	16	13	6	9	9	16	23	9

this is your **result**

this just helps to **communicate** the result

Display your images

Mapping Image Intensity to Monitor Intensity (LookUp Tables)

LUT = how the grey values are <u>displayed</u>

LUTs do not change the pixel values

Images and Colors

Lookup Tables (LUTs)

LUT = how the grey values are <u>displayed</u>

LUTs do not change the pixel values

https://imagej.net

<u>https://imagej.nih.gov/ij/</u>

<u>https://fiji.sc/</u>

<u>https://imagej.net/Fiji</u>

Display images: color, brightness & contrast

- If you are imaging a blue fluorophore, you are not forced to display it in blue!
- Pixel histogram represents the distribution of pixel values in the image
- LUT range

*You are NOT changing the pixels values, you are just changing how the image is displayed (unless you click on the "Apply" button).

Display a file: Brightness & Contrast

Which image has more fluorescence?

Mean:	4803	4803				
Display range:	188- 16828	188- 45514				

Mean:	4803	4803			
Display range:	188- 16828	188- 16828			

Introduction to QuPath

Illustration reprinted from Pete Bankhead.

What is QuPath?

QuPath is an open-source software for bioimage analysis

 Developed and maintained by Pete Bankhead and his team at the University of Edinburgh

Key features:

- 1. Performant when working with very large 2D images, like those produced by slide scanner
- 2. Extremely well maintained

The world's most complex biomedical research The open-source image analysis software **Pete Bankhead** has been thanklessly developing in the UK since 2016

Adapted from https://xkcd.com/2347/

What is QuPath good at?

- It has a nice graphical user interface (GUI)
- It was designed to handle very large 2D images
- It supports common image analysis tasks: segmentation, annotation, feature analysis, and classification
- It support extensive visualization options
- It integrates with many other existing tools (Stardist, ImageJ, ...)
- It support scripting (Groovy, akin to Java)

What is QuPath **not** good at?

- Limited to 2D images
 - Only supports the visualization of single planes
- Does not support all file format (e.g. zarr/NGFF)

Installing Qupath

#!/bin/bash

pip install "\$1" & easy_install "\$1" & brew install "\$1" & npm install "\$1" & docker run "\$1" & dnf install "\$1" & docker run "\$1" & pkg install "\$1" & apt-get install "\$1" & sudo apt-get install "\$1" & steamcmd + app_update "\$1" validate & git clone https://github.com/"\$1"/"\$1" & cd "\$1";./configure;make;make install & curl "\$1" | bash &

INSTALL.SH

https://xkcd.com/1654/

Download QuPath

- 1. Go to https://qupath.github.io/ (see useful links on website)
- 2. Download the installer for the latest version

NB: we recommend the .msi file for Windows users

4. Right-click on the installer file > Open > Confirm Open

For macOS users

Confirm that QuPath installer is not a malware

On your Mac, choose Apple menu \$ > System Settings,
then click Privacy & Security 🖸 in the sidebar. (You may
need to scroll down.)

Security

Allow applications downloaded from

App Store

O App Store and identified developers

"QuPath-v0.5.1-Mac-x64.pkg" was blocked from use because it is not from an identified developer.

Open Anyway

Download QuPath

Follow the steps of the installer

Manage different QuPath versions

macOS users:

- Applications > multiple versions of QuPath installed > Choose the latest one
- Cmd + space, then choose from the list of available versions

Windows users:

- C:\Program Files\QuPath
- Opening your application manager should prompt you the different version of QuPath that have been downloaded

Linux users:

• I don't know

Trick: using multiple versions of QuPath allows to easily run more than one app at the same time on your laptop (i.e. doing so from a single app would require launching each instance from a separate terminal on macOS).

Open the QuPath application

Welcome to QuPath!

Useful resources:

Documentation: https://qupath.readthedocs.io/en/0.5/

QuPath-speficic place in 'The Forum': https://forum.image.sc/tag/qupath

Updater

For now, let's get started

Graphic User Interface (GUI) – intro

Getting help

• In-app documentation: Help menu

CuPath-0.5.1-arm64 File Edit Tools View Objects TMA Measure Automate Analyze Classify Extensions Help

- QuPath documentation: <u>https://qupath.github.io/</u>
- The Forum: https://forum.image.sc/ image.sc
- During this workshop, ask questions to your neighbors, the TA's and me!

Your first project in QuPath

Image Analysis Collaboratory - QuPath workshop

Classification of proliferating cancer cells in solid tumors

- Whole-slide image
 - Already been stitched
- 4 channels
 - DAPI
 - Keratin (FITC)
 - Fibronectin (TRITC)
 - Ki67 (CY5)

At the end of this course:

you will have classified proliferating (Ki67) cancer cells and reveal their spatial distribution to regions with high-fibronectin content

Courtesy of Nina Kozlova, PhD

Download the image from the shared folder

- 1. Download the whole folder from the Google Drive
 - 1. Image size: ~3GB; it will take a minute or two to download
- 2. Unzip it
- 3. Transfer the image in a new *Images* folder in your QuPath project folder

··· > QuPath-share	ed-r	nate	eri	>	Images	•	
X 1 selected 옴+ 土	Þ	Û	Θ	:			
Folders	1						
Image_SW1990 sh	:						
Files	¢	Open	n with		2.	•	
Image_SW1990 shC	± /∎	Dowr Rena	nload me				
	¢,	Share	9			•	
		Orga	nize			•	
	(j)	Folde	er inform	nation		•	
	Ū	Move	to trasl	h			

Key concept: QuPath project

- Projects are the way to organize your work in QuPath
- In other words, they are folders
 - Group together images
 - Organize data, scripts, classifiers, etc
 - They only save data, not the original images
- Allow you to share your work with other QuPath users
 - Always send the images along!

How to create a project?

• Create project button

or

- File > Project... > Create project
- ! Make sure to create an **empty** folder for your project
 - Sometimes, you have to do this twice in the empty folder

Anatomy of a QuPath project

After a bit of time working on it...

< > Project		$\coloneqq \diamondsuit$	<u> </u>	Û	\bigcirc		Q
Name	∧ Date M	odified	S	Size		Kind	
✓	Today	at 12:17 PM				Folder	
📋 classes.json	Apr 6,	2024 at 5:32 P	M	286	bytes	JSON	
> 🛅 object_classifiers	Jan 19), 2024 at 10:54	AM			Folder	
> 🛅 data	Jan 19), 2024 at 10:54	AM			Folder	
project.qpproj	Apr 6,	2024 at 5:32 P	M	4	46 KB	TextEdit	
project.qpproj.backup	Apr 5,	2024 at 1:35 PM	M	4	46 KB	TextEdit	
scripts	Apr 5,	2024 at 9:41 Al	M			Folder	
calculate_median_total_intensity.groovy	Apr 3,	2024 at 1:59 Pt	M		5 KB	Document	
cell_classification.groovy	Apr 5,	2024 at 9:28 A	M		4 KB	Document	
export_measurements.groovy	Apr 3,	2024 at 2:00 P	M		2 KB	Document	
save_rendered_images.groovy	Mar 2	3, 2024 at 5:53	PM		1 KB	Document	
stardist_nuclei_detection.groovy	Apr 3,	2024 at 2:17 PM	N		4 KB	Document	
stroma_annotation.groovy	Apr 5,	2024 at 9:49 A	Μ		4 KB	Document	

Add an image to your project

- 1. Check your emails! Download this folder containing an example whole-slide image
- 2. Add an image
 - Add images button
 - Select the .vsi file

Add an image to your project

3. Select the .vsi image using *Choose files* or drag-and-drop

4. Use default settings

5. Click import

Image paths	
	Drag & drop image or project files for import, or choose from the options below
Image server	Default (let QuPath decide)
Set image type	•
Rotate image	•
Optional args	
✓ Auto-genera	te pyramids
Import object	ts
Show image	selector
Choose files	Input URL From clipboard From path list

Set image type

$\circ \circ \circ$	🔍 QuPath -	Image_SW1990 sl	hC GEM #2 Ker488	FN568 Ki67 647	yH800.vsi ·
	× 00 S	0.57x		N 88	
Project Image Annotations Hierarchy Workflow		• • •	🔍 Set image type		
Create project Open project Add in	nages	What type of im	age is this?		
Image list	-	iniae type of ini	ago io ano i		
 workshop_project/project.qpproj (3) 		Fluorescence	Other	Unspecified	
Image_SW1990 shC GEM #2 Ker488 FN	1568 Ki67 64	•			
Image_SW1990 shC GEM #2 Ker488 FN	1568 Ki67 64	Always prompt m	ne to set type	Ŧ	
Image_SW1990 shC GEM #2 Ker488 FM	N568 Ki67 €	Show Details	Can	cel Apply	

• Other image types are supported: Brightfield H&E, H-DAB, other brightfield

Yay! We have a QuPath project with an image

→ Double-click an image to open it in the viewer

Image Analysis Collaboratory - QuPath workshop

QuPath works on copies of your original files

- QuPath access the image pixels and metadata via an image server
 - Akin to a copy of the original file
- Manipulating files within a QuPath project will never modify the original files or pixels
 - Deleting, duplicating, processing, etc will not be reflected in your original files

QuPath projects are portable

• Sharing a project:

- Zip up the entire project directory
- Email it to your collaborators

The project folder only contains QuPath objects and data, unless you had placed them there. Ensure that they can access the actual image files.

QuPath projects are portable

- Receiving a project:
 - The project still contains image paths specific to the local machine of the sender
 - If you move the image, you will be prompted to update the file path

51

Graphic User Interface (GUI)

Analysis Panel

- Project tab > right-click on an image
 - Open, remove, rename and duplicate images
 - Edit metadata

Analysis Panel

- Image tab
 - Name and image file path
 - Magnification: 20x
 - Pixel type, width and height are crucial for scale calibration
 - Dimensions: 4 channels + 2D
 - Pyramid: level of downsampling in the viewer
 - Image type: previously set to fluorescence

•••	0.	QuPath -
4	0/, ¤ [2] %	00
Project Image Ann	otations Hierarchy Workflow	1
Name	Value	
Name	Image_SW1990 shC GEM #2 K	1
URI	file:/Users/antoine/Desktop/Ima	all a
Pixel type	uint16	
Magnification	20.0	
Width	27943 px (9082.39 µm)	
Height	26143 px (8497.13 μm)	aless.
Dimensions (CZT)	4 x 1 x 1	
Pixel width	0.3250 µm	
Pixel height	0.3250 µm	1968
Uncompressed size	5.4 GB	
Server type	Bio-Formats	
Pyramid	1 2 4 8 16 32 64	
Metadata changed	No	
Image type	Fluorescence	
		Constraint and

QuPath viewer

Viewer

Mini-map: overview

Multi-viewer

• Right-click in the viewer

Image Analysis Collaboratory - QuPath workshop

Graphic User Interface (GUI)

Toolbar

♦	
Project Image Annotations Hierarchy Workflow	
Create project Open project Add images	
Image list	
	Preferences
	Sottings CIII
	customization,

extensions, ...

Example when my cursor is on the paint brush tool

Toolbar

MRO BW Shift+S

Image list

Annotation tools

- M key: move tool
- **R** key: draw a rectangle annotation
- **O** key: draw an ellipse annotation
- **B** key: paint with a brush
- W key: draw with a wand tool
- And many more!

Annotation tools are also accessible in the Tools menu

Project Image Annotations Hierarchy Workflow

Open project

3

Image list

Create project

Shift+C

0

Ф

💿 N 😵 🛃 🗗 C

Brightness and contrast

- Toggle on/off channels
- Adjust LUT range
- Visualize intensity histogram

⊕ □ 0 /, ¤ Ľ ∂ * ‰ s

Add images

=0 🔳 🔹 👘 💷 👘 🗰 🙆 🔳 📀 🛃 🗸

QuPath pro-tip: command list

Command/Control + L

Opens a dialogue to search for any command using keyword

For example, search for 'brightness'

	Command List		
Command	Menu Path	Keys	Help
Brightness/Contrast	View	₽C	?
Fast cell counts (brightfield)	Analyze \rightarrow Cell detection		?
StarDist brightfield cell detection script	$Extensions \to StarDist$		
bright	\geq		Auto clo

Practice time

Exercises 1: QuPath projects and GUI

Introducing objects: annotations and detections

Image Analysis Collaboratory - QuPath workshop

Key concept: QuPath objects

- **Objects** are a 'thing' in an image which encapsulates not only its shape but also some properties about it
 - Annotations: Objects that you usually create yourself, by drawing on the image
 - They are flexible, up to ~100 per image
 - Can be edited
 - Often used to define regions
 - **Detections:** Objects that QuPath usually creates for you
 - They are efficient, up to ~millions per image
 - Can be deleted but not edited
 - Often used to define cells

Analysis Panel

- Annotations tab
 - Annotation list lets you select, delete
 - Right-click to **lock** or edit properties (name, color)
 - Shift or Command/Control to multi-select

▲	▲ ·			
000	(), c	uPath - Image_SW1990 s	hC GEM #2 Ker488	8 FN568 Ki67 64
	IRPAN	S 2.01x		N XX
Project Image Annota	ations Hierarchy Workflow			
Annotation	None	* ·	1 11312	the second
P Annotation	DAPI (C1)		ALC: MARKED	
T Annotation	FITC			A Carl Star
Annotation	RITC (C3)		C.N. Person	
V Annotation Lock		10	a contraction	
Annotation 🗸 Unloc	k -		A Start	
Set pr	ope <mark>t</mark> es		A	A set
large state	in he rarchy		State of the second second	
Insert	innerarchy			9 Par 1
Edit si	ngle			
Edit si	ngle			
Edit si	ngle			
Edit si	ngle			
Edit si	ngle			
Edit si	Filter classifications in list			
Select all Delete	Filter classifications in list			
Select all Delete	Filter classifications in list Set select Auto set Value			
Select all Delete Key Image	Filter classifications in list Filter classifications in list Set select Auto set Image_SW1990 shC GEM			
Select all Delete Key Image Object ID	Filter classifications in list Set select Auto set : Mage_SW1990 shC GEM 1b3c5d7e-6b6e-48ab-bb8d			
Select all Delete Key Image Object ID Object type	Filter classifications in list Filter classifications in list Set select Auto set : Image_SW1990 shC GEM 1b3c5d7e-6b6e-48ab-bb8d Annotation			
Select all Delete Key Image Object ID Object type Name	Filter classifications in list Filter classifications in list Set select Auto set : Image_SW1990 shC GEM 1b3c5d7e-6b6e-48ab-bb8d Annotation			
Select all Delete Key Image Object ID Object type Name Classification	Filter classifications in list Filter classifications in list Set select Auto set : Mage_SW1990 shC GEM 1b3c5d7e-6b6e-48ab-bb8d Annotation			
Select all Delete Key Image Object ID Object type Name Classification Parent	Filter classifications in list Filter classifications in list Set select Auto set : Mage_SW1990 shC GEM 1b3c5d7e-6b6e-48ab-bb8d Annotation Root object (Image)			
Insert Edit si Select all Delete Key Image Object ID Object type Name Classification Parent ROI	Image and ity rilter classifications in list Filter classifications in list Set select Auto set Image_SW1990 shC GEM 1b3c5d7e-6b6e-48ab-bb8d Annotation Root object (Image) Geometry			
Select all Delete Key Image Object ID Object type Name Classification Parent ROI Centroid X µm	Image and ity rgle Filter classifications in list Filter classifications in list Filter classifications in list Image_SW1990 shC GEM 1b3c5d7e-6b6e-48ab-bb8d Annotation Root object (Image) Geometry 1522.1545			
Select all Delete Key Image Object ID Object type Name Classification Parent ROI Centroid X µm Centroid Y µm	Image and ity rgle Filter classifications in list Filter classifications in list Filter classifications in list Image_SW1990 shC GEM 1b3c5d7e-6b6e-48ab-bb8d Annotation Root object (Image) Geometry 1522.1545 2238.5912			
Select all Delete Key Image Object ID Object ID Object type Name Classification Parent ROI Centroid X µm Centroid Y µm Area µm^2	Image and ity rilter classifications in list i Set select Auto set i Image_SW1990 shC GEM 1b3c5d7e-6b6e-48ab-bb8d Annotation Root object (Image) Geometry 1522.1545 2238.5912 1045169.9322			

How to create manual annotations?

Select one of the annotation tools from the toolbar then scribble on the image!

Annotation tools

- M key: move tool
- **R** key: draw a rectangle annotation
- **O** key: draw an ellipse annotation
- **B** key: paint with a brush
- W key: draw with a wand tool
- And many more!

Remember to always lock your annotation to prevent accidental editing! **Practice time**

Exercises 2: QuPath manual annotations

Recreate these annotations

Decide on which annotations tool from the toolbar is best to do so

Create a region of interest with the annotation tools

In the TRITC channel (fibronectin), create a region of interest that enclose highfibronectin content regions

Once you have finished your annotation, **lock** it:

Right-click in the viewer > Annotations > Lock

or

Right-click on the annotation in the analysis panel > *Lock*

Cell detection
Cell detection

- QuPath offers three main options:
 - 1. Built-in cell segmentation algorithm, based on nucleus thresholding and cell body expansion
 - 2. StarDist as an extension (DL)
 - 3. Cellpose as an extension (DL) not covered here
- All yield *Cell Detections* objects that will have shape and intensity measurements for nucleus, cell and membrane
- Detection can be computationally intensive so we will start from the region of interest

Cell detection

1. Built-in cell segmentation algorithm, based on nucleus thresholding and cell body expansion

						Setup parameters		
Measure	Automate	Analyze Classify I	Extensi	ions Help		Detection channel	DAPI (C1)	•
90 shC GI	EM #2 Ker48	Estimate stain vectors		- SW1990 shC GEM #2 Ker488 FN568 Ki67 647 yH800	0 (2)	Requested pixel size	0.5	μm
2.24x	Q 6	Tiles & superpixels	>		cy III	Nucleus parameters		
		Calculate features	~	Positive cell detection		Background radius	8	μm
	1282	Spatial analysis	5			✓ Use opening by r	econstruction	
1000	100	Spatial analysis		Subcellular detection (experimental)		Median filter radius	0	μm
	10.35	Density maps	>	Fast cell counts (brightfield)		Sigma	1.5	μm
						Minimum area	10	μm^2
		1				Maximum area	400	μm^2
						Intensity parameters	5	
1000						Threshold	100	
						Split by shape		
						Cell parameters		
			-			Cell expansion	=0	5 μm
NOT	e that p	ositive cell	aet	ection allows		✓ Include cell nucle	us	
for n	nulti-c	lass segmer	ntat	ion on the fly		General parameters		
		•		-		Smooth boundari	es	
						✓ Make measureme	ents	
				Image Analysis Collaboratory - OuPa	th workshop		Run	

74

Cell detection parameters

Cell detection parameters

Cell detection parameters

Uses roundness of detections shape to split clusters/clumps; keep it ticked for most usages

Threshold	100 -	
🗸 Split by shap	be	
Cell parameters	;	
Cell expansion	=0	5 μm
✓ Include cell r	nucleus	
General parame	eters	
✓ Smooth bou	ndaries	
✓ Make measu	urements	
	Run	

If ticked, will generate measurements specific to each detected nuclei and inferred cytoplasm

Minimum signal intensity of nuclei relative to background

How much to expand nuclei to get cell boundaries

- Enter 0 to disable
- Enter small values 0 2 for peri-nuclear measurements
- Enter values ~5 for cytoplasm measurements, depending on tissues

Cell detection with default parameters

Hierarchy tab

- Detection list
- Nested in its parent annotation (ROI)
- Note the cell count

Note on the hierarchy of objects in QuPath

- QuPath allows to nest objects in one another to organize your projects
 - Child-parent link
 - Very useful to organize and restrict the analysis to parts of an image
 - Can be used to restrict image processing within a ROI or a detected tissue region

Practice time

Exercise 3.a: QuPath cell detection

Exercise: explore parameters

• I found that default parameters tend to over-segment nuclei so adapted the parameters to be slightly stricter (min area and threshold increased)

Duplicate your image

- Copy your cell detection results for future work on it
- Project tab > Image list > Option+click or right-click on the image name > Duplicate image

Project Image Annotations Hierarch	Workflow
Create project Open projec	t Add images
Image list	
 workshop_project/project.qpproj (5) 	
Image_SW1990 shC GEM	#2 Ker488 FN568 Ki67 647 yH
Image_SW1990 shC GEM	#2 Ker488 FN568 Ki67 647 y⊦
Image_SW1990 shC GEM	#2 Ker488 FN568 Ki67 647 yH
Image_SW1990 shC GEM	#2 Ker488 FN568 Ki67 647 y
Image SW1990 shC GEM	#2 Ker488 EN568 Ki67 647 vF
- · ·	Open image
	Remove image
\langle	Duplicate image
	Rename image
	Add metadata
	Edit description
	Mask image names
	Sort by >
	Open directory

Detecting cells with an extra condition

• Analyze > Cell detection > Positive cell detection

Image

Name

Parent

ROI

Object ID

Object type

Classification

Centroid X um

Centroid Y µm

Nucleus: Area

Nucleus: Perimeter

Nucleus: Circularity

Measurements Description

Image_SW1990 shC GEM # ...

dc442fa5-d190-43bc-9059-b.

Cell

Negative

Annotation

Polygon

4920.7693

4044.4737

16.25

14.6112

0.9565

 Adds an extra step of classifying all cells as positive or negative immediately according to staining intensity

Run

5 um

6500

Cell expansion

✓ Include cell nucleus

General parameter

Score compartment

✓ Single threshold

Threshold 1

Threshold 24

Threshold 3+

Smooth boundarie

Intensity threshold parameters

Deep learning-based cell segmentation

- DL-based methods can typically capture more complex patterns, tend to mitigate human bias such as threshold hand-picking
- **However**, they are more computationally expensive and often need finetuning or re-training for specific applications
- StarDist is a deep learning model trained to detect specific kinds of nuclei in different kinds of image

Installing StarDist extension in QuPath

• Browse to

https://github.com/qupath/qupathextension-stardist/releases

- Download the .jar file compatible with your QuPath version
 - For this workshop, get <u>qupath-</u> <u>extension-stardist-0.5.0.jar</u>
- Drag and drop the .jar file onto QuPath main window, and... that's it!

ind o ondingou		
Support for QuPath v0.5.0		
Improved support for TensorFlow via Deep Java Library	,	
 Optionally use the model name for a model stored in the • May be in a 'stardist' or 'models' subdirectory 	e user directory	
 Provides an alternative to specifying the full model 	path	
Reduce non-essential logging messages to 'debug' leve	el	
Reduce non-essential logging messages to 'debug' leve ull Changelog: v0.4.0v0.5.0 Assets 3	el	
 Reduce non-essential logging messages to 'debug' level ull Changelog: v0.4.0v0.5.0 Assets 3 Qupath-extension-stardist-0.5.0.jar 	еl 55.4 КВ	Dec 1, 2023
 Reduce non-essential logging messages to 'debug' level ull Changelog: v0.4.0v0.5.0 Assets 3 Qupath-extension-stardist-0.5.0.jar Source code (zip) 	еl 55.4 КВ	Dec 1, 2023 Dec 1, 2023

Using StarDist extension in QuPath

• Go to Extensions tab > StarDist > StardDist fluorescence cell detection script

Using StarDist extension in QuPath

• Requires to load a pre-trained model (basically the weights)

Script Editor		
<pre>4 " Showing nuclei. 5 *</pre>		^
6 * If you use this in published work, please remember to cite *both*:		_
<pre>/ * - the original StarDist paper (https://doi.org/10.48550/arXiv.1806.03535) 8 * - the original QuPath paper (https://doi.org/10.1038/s41598-017-17204-5)</pre>		- 11
9 *		
10 * There are lots of options to customize the detection - this script shows some 11 * of the main ones. Check out other scripts and the OuPath docs for more info.		- 11
12 */		- 18
13		- 18
14 import qupath.ext.stardist.StarDist2D		
15 import qupath.lib.scripting.gr		
17 // IMPORTANT! Replace this with the path to your StarDist model		- 18
18 // that takes a single channel as input (e.g. dsb2018 heavy augment.pb)		- 18
19 // You can find some at https://github.com/qupath/models		- 18
20 // (Check credit & reuse info before downloading)		- 18
21 def modelPath = "/path/to/model.pb"		- 18
23 // Customize how the StarDist detection should be applied		- 15
24 // Here some reasonable default options are specified		- 18
25 def stardist = StarDist2D		\sim
<)	>
[9:5]	Run	1:
Image Analysis Collaboratory - QuPath v	vorkshop	,

Note: StarDist is rather computationally expensive, typically can take ~ 5 min for 100k detections

StarDist for 2D segmentation of DAPI-stained nuclei

- Some pre-trained StarDist models are freely available as .pb files (frozen)
- Go to <u>https://github.com/qupath/models/raw/main/stardist</u> and download the dsb2018_heavy_augment.pb model

StarDist models

Here you can find pre-trained StarDist models as frozen .pb files that are compatible with OpenCV's DNN module.

This means they can be used in QuPath via the <u>QuPath StarDist extension</u> without any requirement to install TensorFlow.

Downloads

The converted model files are

- dsb2018_heavy_augment.pb single channel
- <u>dsb2018_paper.pb</u> single channel
- <u>he_heavy_augment.pb</u> RGB images

dsb2018_heavy_augment.pb is pretrained for 2D fluorescence images (one detection channel)

Using StarDist extension in QuPath

 Change the value of the modelPath variable to an actual StarDist model path in the script

	Script Editor	
	<pre>19 // You can find some at https://github.com/qupath/models 20 // (Check credit & reuse info before downloading) 21 def modelPath = "/Users/antoine/Desktop/test_qupath_workshop/models/dsb2018_heavy_augment.pb" 20 // (Check credit & reuse info before downloading) 21 def modelPath = "/Users/antoine/Desktop/test_qupath_workshop/models/dsb2018_heavy_augment.pb"</pre>	^
Change the channel name	<pre>23 // Customize how the StarDist detection should be applied 24 // Here some reasonable default options are specified 25 def stardist = StarDist2D 26 builder(modelPath) // Extract channel called 'DAPI' 27 channels('DAPI (Cl)') // Extract channel called 'DAPI' 28 normalizePercentiles(I, 99) // Percentile normalization 29 threshold(0.5) // Probability (detection) threshold 30 .pixelSize(0.5) // Resolution for detection 31 .cellExpansion(5) // Expand nuclei to approximate cell boundaries 32 .measureShape() // Add shape measurements 33 .measureIntensity() // Add cell measurements (in all compartments) 34 .build() 35 INFO: Done!</pre>	~
	[27:24] Stopped: 0:00:12	

Make sure to select the ROI in QuPath before running the script.

Image Analysis Collaboratory - QuPath workshop

Allow cell boundaries to bleed over the ROI

• Add .constrainToParent(false)

```
def stardist = StarDist2D
    .builder(modelPath)
    .channels('DAPI')
    .normalizePercentiles(1, 99)
    .threshold(0.5)
    .pixelSize(0.5)
    .cellExpansion(5)
    .measureShape()
    .measureIntensity()
    .constrainToParent(false)
    .build()
```


Do not constrain cell expansion with neighbors

• Add .ignoreCellOverlaps(true)

```
def stardist = StarDist2D
    .builder(modelPath)
    .channels('DAPI')
    .normalizePercentiles(1, 99)
    .threshold(0.5)
    .pixelSize(0.5)
    .cellExpansion(5)
    .measureShape()
    .measureIntensity()
    .ignoreCellOverlaps(true)
    .build()
```


Exercise 3.b: QuPath cell detection with StarDist

Compare StarDist to threshold-based cell detection, what do you observe?

StarDist can segment

StarDist can **not** segment

Cell detection measurements

Detection measurements

- Each detection object (i.e. a cell) has its measurement list
 - Intensity features
 - Haralick (texture) features
 - Shape features
 - Smoothed features
- Annotations tab > select a cell in the viewer > inspect its measurements list

By default, basic intensity and shape features are calculated

Calculating measurements

 Analyze > Calculate features > Add intensity features

#2 Ker45	Fatimata	atala vesta		- SW1990 shC GEM #21	(er488 F		
	Tiles & su Cell detec	perpixels	5 > >				
	Calculate	features	>	Add smoothed features			
-	Spatial an	alysis	<	Add intensity features			
	Density m	naps	>	Add shape features			

Tick boxes of the channels and features of interest

Need a custom feature? Script it!

Com	pute intensity features
Resolution Preferred pixel size	2 µm
Regions	
Region	ROI
Tile diameter	25 μm
Channels/Color transfo DAPI (C1)	orms
TRITC (C3)	Process regions
✓ CY5	Process all Detections
Basic features	
V Mean	Cancel
Min & Max	
Median	
Haralick features	
Compute Haralick fe	atures
Haralick min	NaN
Haralick max	NaN
Haralick distance	1
Haralick number of bins	32.0
	Run

Visualizing measurements

• Measure > Show detection measurements

Objects TMA Measure Automate	Ar Columns: measurements									
Show measurement maps S % M Show measurement manager Show measurement manager	200.vsi - Sw 1990	tions: Image_SW1990	shC GEM #2 Ker488 F	N568 Ki67 64	7 yH800.vsi - SW1990	shC GEM #2 Ke	r488 FN568 Ki	67 647 yH800 (2)	1	
Show appotation measurements	Thumbnail Image	e Object type	Name Classification	Parent	ROI Centroid X µm	Centroid Y µm	Nucleus: Area	Nucleus: Perimeter	Nucleus: Circular.	
Grid views >	Image_SW19	90 shC Cell		Annotation F	Polygon 4950.4	4028.8	26.5	21.24	0.738	
Export measurements	Image_SW199	90 shC Cell		Annotation F	Polygon 5008.6	4035.6	147.25	47.22	0.83	
	Image_SW19	90 shC Cell		Annotation F	Polygon 4929.4	4035.7	84.5	35.37	0.849	
Rows: cells	Image_SW199	90 shC Cell		Annotation F	Polygon 4942.9	4037.3	47	26.62	0.833	
	Image_SW199	90 shC Cell		Annotation F	Polygon 4920	4039	34.25	24.3	0.729	
·	Column filter Show	histograms		Copy to	o clipboard			Save	.* []:	

Image Analysis Collaboratory - QuPath workshop

Visualizing measurement distributions

• Measure > Show detection measurements

••	Detections: Im	age_SW199	0 shC GE	M #2 Ker488 F	N568 Ki67 (647 yH80).vsi - SW1990	shC GEM #2 Ke	488 FN568 Ki	67 647 yH800 (2)				
numbnail	Image	Object type	Name	Classification	Parent	ROI	Centroid X µm	Centroid Y µm	Nucleus: Area	Nucleus: Perimeter	Nucleus: Circular.	Nucleus: Perimeter		
0	Image_SW1990 shC	Cell			Annotation	Polygon	4950.4	4028.8	26.5	21.24	0.738			
0	Image_SW1990 shC	Cell			Annotation	Polygon	5008.6	4035.6	147.25	47.22	0.83	400		
0	Image_SW1990 shC	Cell			Annotation	Polygon	4929.4	4035.7	84.5	35.37	0.849	91 300 U 200		
	Image_SW1990 shC	Cell			Annotation	Polygon	4942.9	4037.3	47	26.62	0.833	100		
8	Image_SW1990 shC	Cell			Annotation	Polygon	4920	4039	34.25	24.3	0.729 ~	0 5 10 15 20	25 30 35 40 45 50 55	
lump filte	Show histogra	ms	<u> </u>	>	Cop	y to clipboa	rd	Ĭ		Save	· ·	0 0 10 10 20	Values	
					-		-		-				Measurement	Value
												Normalize counts	Count	10,877
												Draw grid	Missing	0
												✓ Draw axes	Mean	29.6
												Number of bins 100	Std.Dev	7.977
FYI, it is not possible to export distribution plots							expo	rt		Animate changes	Min	13.537		
											Max	83.695		
				P										
												aboard	Save	

Visualizing measurements as heat maps

• Measure > Show measurement maps

Your favorite color map, A and its range of value

Export measurements the right way

• *Measure > Export measurements*

•

Drag an image from Available to Selected

Cell classification

Image Analysis Collaboratory - QuPath workshop

What is cell classification?

\$

\$

explain in one sentence to a toddler what is cell classification in the context of image analysis < 5/5 > Cell classification is like sorting different kinds of toys into separate boxes based on how they look. Thank you, I'm sure students will love being compared to toddlers < 3/3 > It's all about finding the right analogy for understanding! If it helps simplify a complex concept, then it's worth it. 027

What is cell classification?

- Cell classification in image analysis is sorting different types of cells into groups based on their features or characteristics, such as shape, color, position, neighbors, etc.
- If visually you can't discriminate cells in your images, then your algorithm might be separating cell on very fine differences (careful of *overfitting*)

Cell classification in QuPath

- Single measurement classifier
- Composite thresholder: combine single measurement thresholders together
- Train a machine learning classifier

Create a class named 'Keratin+'

• • •	🔍 QuPath	- Image_SW1990 shC GEM #2 Ker488 FN568 Ki67 (
•	<, 𝔼 𝔅 𝔅 ↔ ↔	S 5.32x S N	
Project Image Annotations	Hirrarchy Workflow None DAPI (C1) FITC TRITC (C3) CY5 Ignore*		• Anno list > class
Select all Delete	Filter classifications in list Set selected	dd/Remove	We'll ch
Key	Value	Populate from existing objects Remove class	
Image	Image_SW1990 shC GEM #2	Populate from image channels	
Object type	Root object (Image)	Reset to default classes	Add class
Name Num Detections	10877	Show/Hide	
		Select objects by classification	Class name Keratin+
			Cancel
Measurements Description		100 µm	_

Annotations tab > Classification
 list >
 > Add/Remove... > Add
 class

Default classes are channel names. We'll change that.

OK

Create a second class named 'Ki67+'

Annotations tab > Classification
 list > i > Add/Remove... > Add
 class

Default classes are channel names. We'll change that.

OK

Change the color of a class

• Double click on the class > Edit class > Choose a new color > OK

Simple measurement classifier on Keratin signal intensity (FITC channel)

Classify > Object classification > Create single measurement classifier

Analyze	Classify Extensions	Help 🕅 🔻	E4),	? (Wed May		
990 shC G	Object classification>Pixel classification>	Reset detection	on classific assifier	ations				
	Training images >	Train o bject cl Create single	assifier measurem	ent clas	ssifier		le measurement classifier (Image, SW1990 shC G	FM #2 Ker488 FN568 Ki67 647 vH
as	100 C 3 V	Create compo Set cell intens	site classif ity classifie	lier cations		Object filter	Cells	
						Channel filter	FITC	
							Cell: FITC mean	
						Threshold	8,580.882	9
						Above threshold	Keratin+	
	Shows classification					Below threshold	Ignore*	▼ 0 20,000 40,000 60,000
		on the fly			_	Live preview		Log histogram
						Classifier name	keratin_classifier Save	
		Save: !! Save	e you ssifie	r r				Cancel Apply
Simple measurement classifier on Ki67 signal intensity (CY5 channel)

Classify > Object classification > Create single measurement classifier

Analyze	Classify Extensions H	Help O 🖇 🗩 奈 Q	🖶 Wed May			
1990 shC GI	Object classification >	Reset detection classifications				
	Pixel classification >	Load object classifier				
SADAR	Training images >	Train object classifier	O HD			,
LE COS	9256 OA 3	Create single measurement classifie	er 🛛 😣 🔵 🔘 🍭 Sing	gle measurement classifier (Image_SW1	1990 shC GEM #	2 Ker488 FN568 Ki67 647 yH
		Set cell intensity classifications	Object filter	Cells	•	-
			Channel filter	CY5	•	
			Measurement	Nucleus: CY5 mean	•	
			Threshold		1500	
			Above threshold	Ki67+	•	
			Below threshold	Ignore*	-	0 10,000 20,000 30,000
			✓ Live preview			Log histogram
			Classifier name	CY5	Save	
						Cancel Apply

Practice time

Exercise 4.a: single-measurement classifier

Combine single measurement classifiers into a composite classifier

Classify > Object classification > Create composite classifier

Practice time

Exercise 4.b: composite classifier

Reset detection classes

 Classify > Object classification > Reset detection classifications

Classify Extensio	ns H	elp 🖸	*	D ,	(î·	Q	8	Wed May
Object classification	0	Reset det	ectior	ı classif	icatio	าร		
Pixel classification	>	Load obje	ect cia	ssifier				
Training images	>	Train obje	ect cla	ssifier				公光D
CONV. AN	89	Create si	ngle m	easure	ment o	lassif	ier	-
43220	Prac	Create co	mpos	ite clas	sifier			1000
A	A A	Set cell ir	ntensit	y classi	ficatio	ns		

Populate classes in the classification panel

Annotations tab >
 Classification list > : >
 Populate from existing
 objects > All classes
 (including sub-classes)

Object classification using machine learning

- Detections (and annotations) can be classified into classes using a ML classifier
- Classification requires measurements!
- Object classifiers are trained using manual annotations of 2 or more classes
 - Need to create some training data points
- Live demo of object classification using ML

Reset your detection classes!

Train an object classifier: create classes

• Annotations tab > Classification list > 🔢 > Add/Remove... > Add class

- <u>Create 4 classes:</u>
 - Keratin+
 - Keratin-
 - Ki67+
 - Ki67-

None
Ki67+ (1)
Ignore*
Keratin+ (1)
Ki67keratin-

Train an object classifier: training data points

Add > Label ~10 for each class

To remove a single point: Option + click (Mac) or left-click

- Assign each training data set a class:
 - Select the annotation set
 - Select the class

Click edit to change color

Train an object classifier: training data points

• Assign each training data set a class in the Annotations tab

Project Image Annotations H	ierarchy Workflow	Project Image Annotations Hie	erarchy Workflow
 Annotation (13 points) Annotation (13243 objects) Annotation (Keratin+) (13 p Annotation (Ki67+) (13 points) 	None Ki67+ (1) Ignore* Keratin+ (1) Ki67- keratin-	 Annotation (13243 objects) Annotation (Keratin+) (13 p Annotation (Ki67+) (13 points) Annotation (Ki67-) (13 points) Annotation (keratin-) (13 poi	None Ki67+ (1) Ignore* Keratin+ (1) Ki67- (1) keratin- (1)
Select all Delete	Filter classifications in list Set selected Auto set :	Select all Delete :	Filter classifications in list Set selected Auto set

Make sure to lock your annotation: Ctrl+click > Lock

Train an object classifier

Classify > Object classification > Train object classifier

Train an object classifier

• Classify > Object classification > Train object classifier

			● ● ●	Train object	classifier	
			Object filter	Detections (all)		
	Model type (R	.T, ANN, k-NN) ←	Classifier	Random trees (RTr	ees) 🔹	Edit
			Features	All measurements	•	Select
atures: choo	se Selected mea	asurements	Classes	Selected classes	-	Selec
1 click Select	t to restrict the	feature space	Training	Points only		
			Loa	d training	Advanced option	าร
				Live up	date	
				Training	data	
Select classe	es Selected					i Ki67+
eratin+						🛑 Ki67-
67+						
ratin-						
	_		Classifier name	Ki67_classifier		Save
				Name it	to save it.	

Combine multiple ML classifiers together

Classify > Object classification > Create composite classifier

Refine your classifier

- Add more training data points
 - Classification results will change in real time if 'Live update' option is enabled
- Typically, *fewer*, but *well-chosen* features provides more robust results

Visualizing results using density maps

Analyze > Density maps > Create density maps

Automating tissue identification

00

7

0

Image Analysis Collaboratory - QuPath workshop

But first, let's talk smoothing

Intermezzo aperto

Robert Collins CSE486, Penn State Today: Smoothing Reduces Noise

Robert Collins CSE486, Penn State

Gaussian Smoothing Filter

An isotropic (circularly symmetric) Gaussian:

Robert Collins CSE486, Penn State Gaussian Smoothing Example

original

sigma = 3

Robert Collins CSE486, Penn State

Gaussian Smoothing at Different Scales

Balancing act: smooth enough to "clean up" the noise, but not so much as to remove important image gradients.

Back to QuPath

Intermezzo chiuso

Creating a region of interest

In the TRITC channel (fibronectin), create a region of interest that enclose highfibronectin content regions aka stromal regions

Once you have finished your annotation, **lock** it:

Right-click in the viewer > Annotations > Lock

or

Right-click on the annotation in the analysis panel > *Lock*

Pixel-based tissue annotation

 Simplest case of annotation: every pixel get assigned a class based on its intensity value – or is a given pixel above or below a certain numeric value?

QuPath-0.5.1-arm64 File Edit Tools View QuP	w Objects TMA Measure ath - Image_SW1990 shC GEM #	Automate #2 Ker488 FN568 Ki67 647 yH	Analyze 1800.vsi - SW1990 shC G	Classify Extensions Help ●) 第 ■) 주 Q ≅ Wed May 1 8:39 PM Object classification > i47 yH800 (1)
Project Image Annotations Hierarchy Workflow Annotation None DAPI (C1) FITC TRITC (C3) CY5	Resolution Channel	Create thresholder Moderate (2.60 µm/px) TRITC (C3)	-	Pixel classification > Load pixel classifier Training images Train pixel classifier O 35P Create thresholder
esolution: trade-off betweer etails and computational co	Prefilter Smoothing sigma Threshold Above threshold	Gaussian 5 3500 Stroma	5 3500	Pre-process images with filters e.g smooth out noise with gaussian (sigma is the kernel size in pixels)
Decide to use ROI or the full image	Below threshold Region Classifier name	Unclassified Any annotation ROI stroma_classifier Create objects	Save Classify	Save your thresholder to use it!

Interactive visualization of thresholding results

Create a class 'Stroma'

Try varying the value of the different parameters!

Create annotations from pixel classifier

	% × § 1 Σ	S 2 .32x		
Project Image Annotations	Hierarchy Workflow	000	Create thresholder	A.C.
O Annotation	None			
	DAPI (C1)	Resolution	Moderate (2.60 µm/px)	·
	FITC	Channel	TRITC (C3)	 Dissipping
	TRITC (C3)	Prefilter	Gaussian	-
	CY5	Creathing signed		
	Stroma	Smootning sigma	5 5	
		Threshold	3500	500
		Above threshold	Stroma	-
		Below threshold	Unclassified	-
		Region	Any annotation ROI	-
		Classifier name	stroma_classifier Sa	ve
		Measure	Create objects Classify	
			Pixel classifier	
			~	
	Filter classifications in list		Choose parent objects Current se	election 👻
Select all Delete	Set selected Auto set			
Annotation	Edit	1500	Cancel	ОК
No description set				

- Real-time visualization of results, once happy with it:
 - 1. Save your thresholder
 - 2. Select ROI
 - 3. Click Create objects
 - 4. Keep default

parameters > OK

	Create ob	jects	
\bigcirc	New object type	Annotation	•
	Minimum object size	0	µm^2
	Minimum hole size	0	µm^2
	Split objects		
	Delete existing of	ojects	
	Create objects fo	r ignored classes	
	Set new objects t	o selected	
		Cancel	OK

Create annotations from pixel classifier

Fully annotated image

Spatial information: signed distance

Analyze > Spatial analysis > Signed distance to annotations 2D

- Calculates the signed distance (2D euclidian) between cells and annotations
 - If a cell lies <u>inside</u> the annotation: <u>negative</u> distance
 - If a cell lies <u>outside</u> the annotation: <u>positive</u> distance

Spatial information: signed distance

• Measure > Show detection measurements

Export measurements table and use Python/R for visualization based on classes

Thumbnail		~	Signed distant	e to annotation Stro	ema µm	
0	Image_SW1990 shC GEM #2 F	Ker488 FN568 Ki67 64	600 500 400			
\bigcirc	Image_SW1990 shC GEM #2 F	Ker488 FN568 Ki67 64	200 100			
			0		I I I I I I I I I I I I I I I I I I I	niininine.
\bigcirc	Image_SW1990 shC GEM #2 F	Ker488 FN568 Ki67 64	-300	-200 -100 0 V	100 200 300 /alues	400
\bigcirc	Image_SW1990 shC GEM #2 F	Ker488 FN568 Ki67 64	-300	-200 -100 O	100 200 300 /alues Measurement	400 Value
	Image_SW1990 shC GEM #2 P	Ker488 FN568 Ki67 64	-300	-200 -100 0 V	100 200 300 /alues Measurement Count	400 Value 13,243
	Image_SW1990 shC GEM #2 F	Ker488 FN568 Ki67 64 Ker488 FN568 Ki67 64	-300	-200 -100 0 V	100 200 300 /alues Measurement Count Missing	400 Value 13,243 0
	Image_SW1990 shC GEM #2 F	Ker488 FN568 Ki67 64 Ker488 FN568 Ki67 64	-300	-200 -100 0 V	100 200 300 /alues Measurement Count Missing Mean	400 Value 13,243 0 76.258
	Image_SW1990 shC GEM #2 F	Ker488 FN568 Ki67 64 Ker488 FN568 Ki67 64	-300	-200 -100 0 V counts	100 200 300 /alues Measurement Count Missing Mean Std.Dev	400 Value 13,243 0 76.258 98.576
	Image_SW1990 shC GEM #2 F	Ker488 FN568 Ki67 64 Ker488 FN568 Ki67 64	-300 Normalize	-200 -100 0 V counts	100 200 300 /alues Measurement Count Missing Mean Std.Dev Min	400 Value 13,243 0 76.258 98.576 -198.573
	Image_SW1990 shC GEM #2 F	Ker488 FN568 Ki67 64 Ker488 FN568 Ki67 64 Ker488 FN568 Ki67 64 >	-300	-200 -100 0 V counts	100 200 300 /alues Measurement Count Missing Mean Std.Dev Min Max	400 Value 13,243 0 76.258 98.576 -198.573 452.137
Column filter	Image_SW1990 shC GEM #2 F Image_SW1990 shC GEM #2 F Image_SW1990 shC GEM #2 F	Ker488 FN568 Ki67 64 Ker488 FN568 Ki67 64 Ker488 FN568 Ki67 64 Xer488 FN568 Ki67 64	-300 Normalize	-200 -100 0 V counts	100 200 300 /alues Measurement Count Missing Mean Std.Dev Min Max	400 Value 13,243 0 76.258 98.576 -198.573 452.137

String message = "Hello, Groovy!" int age = 25 double pi = 3.14 boolean isGroovy = true List<Integer> numbers = [1, 2, 3, 4, 5] Map<String, Object> person = [name: "John", age: 30, city: "New York"]

Scripting, workflows and batch processing

Scripting in QuPath

- QuPath uses **Groovy**, a scripting language with Java-like syntax
- Some <u>fun</u> facts about Groovy:
 - Created by James Strachan in 2003
 - Open-source (under the Apache License 2.0)
 - Groovy is a superset of Java and its syntax is Java-like
 - Bonus: dynamically typed (vs Java being statically typed)

Scripting in QuPath

• Automate > Script editor

Measure	Automate Analyze Classify	Extensions	• • •	Script Editor	
\langle	Script editor		Scripts	1	
3 2	Script interpreter		*Untitled 1		
erarchy	Show workflow command history Create command history script	Ω₩W			
project	Shared scripts	>			
	User scripts	>			
(5)	Project scripts	>			
-					
				[1:1] Run	1 :

Hello World!

• Automate > Script editor

Automate your workflows without coding

QuPath uses **Workflows** to represent sequences of steps that have been applied to an image (commands run but also the parameters used).

- Analysis panel > Workflow tab
- The Command history is a record of most processing that has been done to the currently open image

Clean your workflow for cell detection and classification

	2.	Script Editor	
nage type	Scripts	<pre>1 setImageType ('FLUORESCENCE'); 2 runPlugin ('gupath.imagei.dets</pre>	; ect.cells.WatershedCellDet
ection	*Untitled 1	3 runObjectClassifier("keratin	_ki67_classifier");
object classifier	*Untitled 2		
Parameter Value		<	Pin :
ralameter value	-	[4:1] Stopped: 0:00:00	Run :
No content in table		Set image type Cell detection	Copy commands
		Run object classifier	Moyo up
			Move down
1			Remove selected items
1.			

Save and run a script

• • •	Worl	cflow
Set image type		
Cell detection		
Run object classifier		
Parameter		Value
	No conte	nt in table
		1.
	· ·	

Scripts can be repeated on a batch of images

QuPath allows for batch processing: scripts will run on multiple images loaded in the project.

• Run > Run for project

Insert	Run	Help			
mage	Run		ЖR		
S	Run s	elected code	☆ %R		
	Run for project				
0	Run fo	or project (without saving)			
Set	Kill ru	nning script			
Cel	✓ Includ	le default imports			
Ru	✓ Show	log in console			
	Log se	cript time			
	✓ Auto d	clear console			
- 2	✓ Clear cache (batch processing)				
	Use c	ompiled scripts			

Available	Selected
Image_SW1990 shC GEM #2 Ker488 FN568	Image_SW1990 shC GEM #2 Ker488 FN56
Image_SW1990 shC GEM #2 Ker488 FN568	Image_SW1990 shC GEM #2 Ker488 FN56
Image_SW1990 shC GEM #2 Ker488 FN568	
	*
< >	<
	2 selected
With data file only	A selected image is open in the viewer!
wardata ne only	Any unsaved changes will be ignored.
	Cancel
	Galico

Further resources

- QuPath documentation
 - Scripting: <u>https://qupath.readthedocs.io/en/latest/docs/scripting/overview.html</u>
 - QuPath's API docs: <u>https://qupath.github.io/javadoc/docs/</u>
- The Forum
 - Where to contact the developers of most image analysis tools
 - If you have a question, likely someone else already asked

QuPath on O2

Ranit Karmakar

Give us your feedback!

https://tinyurl.com/52hu7bkt

Further resources

- QuPath documentation
 - Scripting: <u>https://qupath.readthedocs.io/en/latest/docs/scripting/overview.html</u>
 - QuPath's API docs: <u>https://qupath.github.io/javadoc/docs/</u>
- The Forum
 - Where to contact the developers of most image analysis tools
 - If you have a question, likely someone else already asked

