

• Segmentation is the division of an image into discrete regions.

Input

Semantic

Background

Instance

Background Nucleus 1 Nucleus 2 Nucleus 3

. . .

Image Analysis How do we get segments?

- Thresholding-based
- Interactive tools based on classic machine learning
- Deep-learning based (Stardist, Cellpose)

Thresholding

The easiest way to segment an image is often by applying a global threshold.

This identifies pixels that are above or below a fixed threshold value, giving a binary image as the output.

https://bioimagebook.github.io/chapters/2-processing/3-thresholding/thresholding.html

Thresholding

Original, 8 bit grayscale Blobs: Fiji example

Thresholded

Instance Segmented

Instance Segmentation in FIJI: keeping white (connected-) objects.

Select only a **range** of **digital values** in the image.

Select only a range of digital values in the image.

The result of the thresholding process is a **Binary Mask**.

Generate a **binary mask**.

8 bit image (0 - 255)

Binary because the image has only **two** pixel values, **one for** the **selected pixels** and **one for** the "**discarded**" **pixels**.

In Fiji the two pixel values are **0** and **255**.

0 **or** 255

Segmentation with thresholding—exercises

4.1 DAPI segmentation with thresholding

Stop at (including) point 10, Do not continue further

Manual vs. automated thresholding

Manual thresholding is nonreproducible. Typically, each image requires a different threshold

Automatic thresholding uses histogram information to set a threshold.

interested in.

What can go wrong?

Usually, if you apply **thresholding** to the "ORIGINAL" image (the one you get out of the microscope), you won't be able to precisely select all/only the pixels you are

- Fluorescence label (e.g. DAPI)
- **Background** (uneven illumination, out-of-focus light, aberration, ...)
- Noise (detector read noise, Poisson noise, ...)

Interactive tools based on classic machine learning

Annotate

Predict

Standalone: Ilastik

https://www.ilastik.org/

For histopathology

https://qupath.github.io/

As a Fiji plugin: Labikit

https://imagej.net/plugins/labkit/

in **Fiji**:

0

0

Image Analysis

Collaboratory

Plugins

- > Labkit
- > Open Current Image With Labkit

•	•	•	6		
1	Ima	age			
3	Din	ner	nsio	ons	
		au	to d	con	tr
1	Lat	bel	ing		
	-		bad	ckg	rc
			for	egn	21
I	+	Ac	d l	ab	el
	Seg	gm	ent	atio	or
	Ad	bb	se	gme	er
		L	abł	cit F	Pi

in **Fiji**:

0

0

Image Analysis

Collaboratory

Plugins

- > Labkit
- > Open Current Image With Labkit

•••
Image
Dimensions: [25
auto contras
Labeling
backgrou
foreground
+ Add label
Segmentation
#4 - Labkit Pixe
+ Add classifi

Image Analysis Labkit Segmentation

in **Fiji**:

Collaboratory

00

Plugins

- > Labkit
- > Open Current Image With Labkit

	Pixel Classification Settings
U accelera	tion: (experimental, requires CLU2 and NVIDIA GPU)
ions:	2D
igmas:	1.0; 2.0; 4.0; 8.0
Basic Filt	ters Il image
🗹 gaussi	an blur (for each sigma)
differen	nce of gaussians (for each sigma)
🗹 gaussi	an gradient magnitude (for each sigma)
🗵 laplaci	an of gaussian (for each sigma)
🗹 hessia	n eigenvalues (for each sigma)
structu	ure tensor eigenvalues (for each sigma)
🔲 min filt	ters (for each sigma)
max fil	Iters (for each sigma)
mean f	filters (for each sigma)
variand	ce filters (for each sigma)
Customia	zable Filters
Deprecat	ed Filters

Cancel

OK

00

Image Analysis

00

Image Analysis

Ø

00

Image Analysis

Segmentation $\overline{\mathbf{a}}$ #3 - Labkit Pixel Clas... n

00

Image Analysis

Ø

4.3 DAPI segmentation with Labkit

Breakpoint at 12: Create results