

Spatial statistics: Object-based colocalization

The data

IAC and BOB are proteins in the eastern spruce budworm (*Choristoneura fumiferana*) epidermis

You hypothesize that the spatial interaction between IAC and BOB changes with temperature and season.

The data

IAC

BOB

X	y
2.59176, 2.35522, 3.60981, 2.91734, 2.46703, 2.60448, 1.24649, 3.67557, 2.63406, 2.77047, 2.90153, 4.02456,	12.7033 12.9357 12.0081 12.7667 11.849 12.6463 11.4218 4.29607 4.7991 4.19997 4.83014 4.98462

The data — Fall epidermis samples

The data — Fall epidermis samples

The data — Fall epidermis samples

Do IAC and BOB attract or repulse each other depending on temperature? Is there an association between attraction and repulsion and temperature?

The data — Winter epidermis samples

The data — Winter epidermis samples

The data — Winter epidermis samples

Do IAC and BOB attract or repulse each other depending on temperature? Is there an association between attraction and repulsion and temperature?

Q: Do you see patterns?

How would you analyze the data?

$$\frac{74 + 330 + 110 + 165}{4} = 169.75$$

BOB IAC
$$80+138+78+111+141+220 = 121$$

Distances	Mean	
74, 330, 110, 165	169.75	

Distances					Mean	
80,	138,	78,	111,	141,	220	121

dist_matrix

dist_matrix

np.min(dist_matrix, axis = 1)

dist_matrix

np.min(dist_matrix, axis = 1)

dist_matrix

np.min(dist_matrix, axis = 1)

Results: Mean distance | AC -> BOB

Results: Mean distance | AC -> BOB

Results: Mean distance BOB -> IAC

- Asymmetric: BOB → IAC ≠ IAC → BOB
- Returns: One number
- Range: Short

Beyond the mean distance to nearest neighbor

Similar concepts hold true beyond the realm of just points

Beyond the mean distance to nearest neighbor

Similar concepts hold true beyond the realm of just points

Mean dist: 1

Mean dist: 1

$$S(r) = \frac{1}{n_1} \sum_{i=1}^{n_1} \mathbf{1}(d_i < r)$$

$$S(r) = \frac{1}{n_1} \sum_{i=1}^{n_1} \mathbf{1}(d_i < r)$$

$$S(r) = \frac{1}{n_1} \sum_{i=1}^{n_1} \mathbf{1}(d_i < r)$$

$$S(r) = \frac{1}{n_1} \sum_{i=1}^{n_1} \mathbf{1}(d_i < r)$$

$$S(r) = \frac{1}{n_1} \sum_{i=1}^{n_1} \mathbf{1}(d_i < r)$$

- Asymmetric: BOB → IAC ≠ IAC → BOB
- Returns: A number for each radius
- Range: Short

Beyond the nearest neighbor function

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r) \qquad S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$S(r) = rac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$S(r) = rac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

$$n_1 n_2 = n \text{ connections} = 24$$

$$n_1 n_2 = n \text{ connections} = 24$$

$$|\Omega|$$
 = Area of FOV

$$|\Omega|$$
 = Area of FOV

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r)b(i, j, r)$$

Fall — cold

Fall — medium

Fall — warm

$$|\Omega|$$
 = Area of FOV

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r) b(i, j, r)$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r) b(i, j, r)$$

$$b(i,j,r) = \frac{|c(i,d_{ij})|}{|c(i,d_{ij}) \cap \Omega|}$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r) b(i, j, r)$$

$$b(i,j,r) = \frac{|c(i,d_{ij})|}{|c(i,d_{ij}) \cap \Omega|}$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r) b(i, j, r)$$

$$b(i,j,r) = \frac{|c(i,d_{ij})|}{|c(i,d_{ij}) \cap \Omega|}$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r) b(i, j, r)$$

$$b(i,j,r) = \frac{|c(i,d_{ij})|}{|c(i,d_{ij}) \cap \Omega|}$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r) b(i, j, r)$$

$$b(i,j,r) = \frac{|c(i,d_{ij})|}{|c(i,d_{ij}) \cap \Omega|}$$

$$S(r) = \frac{|\Omega|}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}(d_{ij} < r) b(i, j, r)$$

$$b(i,j,r) = \frac{|c(i,d_{ij})|}{|c(i,d_{ij}) \cap \Omega|}$$

- Symmetric: BOB → IAC = IAC → BOB
- Returns: A number for each radius
- Range: Long

Beyond Ripley's K function

S. Mukherjee, C. Gonzalez-Gomez, L. Danglot, T. Lagache and J. -C. Olivo-Marin, "Generalizing the Statistical Analysis of Objects' Spatial Coupling in Bioimaging," in *IEEE Signal Processing Letters*, vol. 27, pp. 1085-1089, 2020, doi: 10.1109/LSP.2020.3003821.

Benimam, M.M., Meas-Yedid, V., Mukherjee, S. *et al.* Statistical analysis of spatial patterns in tumor microenvironment images. *Nat Commun* **16**, 3090 (2025). https://doi.org/10.1038/s41467-025-57943-y

Summary

- How are proteins distributed that
 - Don't interact with each other
 - Or their surrounding

What is the evidence that my points may or may not be distributed like this?

- How are proteins distributed that
 - Don't interact with each other
 - Or their surrounding
- To find out, you blindly throw darts at a board

What is the evidence that my points may or may not be distributed like this?

- How are proteins distributed that
 - Don't interact with each other
 - Or their surrounding
- To find out, you blindly throw darts at a board
- The chance of a dart landing is the same, no matter where on the board

What is the evidence that my points may or may not be distributed like this?

"Uniformly distributed"

"Uniformly spaced"

- How are proteins distributed that
 - Don't interact with each other
 - Or their surrounding
- To find out, you blindly throw darts at a board
- The chance of a dart landing is the same, no matter where on the board

- How are proteins distributed that
 - Don't interact with each other
 - Or their surrounding
- To find out, you blindly throw darts at a board
- The chance of a dart landing is the same, no matter where on the board
- The darts can have multiple colors

Empirical null distributions

Analytic null distribution

Density of points n₂

You don't need any data to compute the analytic null distribution

Analytic null distribution

$$S(r) = 1 - e^{-\frac{n_2}{|\Omega|}\pi r^2}$$

Area of a circle with radius r

You don't need any data to compute the analytic null distribution

BOB = 400

IAC = 400

$$S(r) = 1 - e^{-\frac{n_2}{|\Omega|}\pi r^2}$$

Exercise: Find good values for n2 and $|\Omega|$

```
n = 1345345 # number of points in the dataset
area = 4056780 # area of the FOV

nulldist = getnulldist(
    n=n, area=area, radii=radii
) # These are not good values for n and area. Change them!
```


Results — the null distribution

1000

1000

mean of 1000 realizations

analytic null distribution

mean of 1000 realizations
2.5-97.5% quantile range
analytic null distribution

Exercise: throw darts at a board

Results: Mean distance IAC -> BOB

Results: Mean distance IAC -> BOB

Cold IAC->BOB are closer to each other than random under the 95% significance level

Warm IAC->BOB are further apart from each other than random under the 95% significance level

Results: Nearest neighbor function

Results: Nearest neighbor function

Results: Ripley's K function

Winter — cold

Winter — medium

Winter — warm

Results: Ripley's K function

Winter cold mean of 1000 realizations 2.5-97.5% quantile range Winter warm

Statistically Statistically 60 significant significant clustering dispersion 50

Winter — medium

40 -

The bigger picture: Monte-Carlo-based significance testing

- Just because your sample isn't uniformly distributed doesn't mean it is biologically meaningful!
- It is possible to simulate hypotheses beyond uniform distributions.

Python notes

Our implementation of Ripley's K was tested against the Locan library implementation:

https://locan.readthedocs.io/en/latest/tutorials/notebooks/Analysis_Ripley.html#

References

Lagache T, Sauvonnet N, Danglot L, Olivo-Marin JC. Statistical analysis of molecule colocalization in bioimaging. Cytometry A. 2015 Jun;87(6):568-79. doi: 10.1002/cyto.a.22629. Epub 2015 Jan 20. PMID: 25605428.

Ripley, B. D. "The Second-Order Analysis of Stationary Point Processes." *Journal of Applied Probability*, vol. 13, no. 2, 1976, pp. 255–66. *JSTOR*, https://doi.org/10.2307/3212829. Accessed 13 July 2025.

