In [1]: from microscopy import analysis
In [3]: analysis.imshow (img)
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Intfroduction to Colocalizationin Fluorescence Microscopy
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What Colocalization

in Fluorescence Microscopy

“Yellow" Is not colocalization

Whye
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What Colocalization IS NOT in Fluorescence Microscopy

“Yellow' Is not colocalization
Whye

1. you should never see yellow
because you should not use
red and green together.

o 2 InFji: Image > Color > Dichromacy or Image > Color > Simulate Color Blindness %@ﬁ
vy &




What Colocalization IS NOT in Fluorescence Microscopy

“Yellow' Is not colocalization
Whye

1. you should never see yellow
because you should not use
red and green together.

2. You can visualize overlap only it
the signal is high in both
channels.

3. How to quantify?

o 2 InFji: Image > Color > Dichromacy or Image > Color > Simulate Color Blindness %@ﬁ
vy &




What Colocalization IS NOT in Fluorescence Microscopy

cannot prove information about protein/molecules interaction or binding

(but may provide evidence for)

We can detect where the fluorescence signal is

Adapted from Xu et dl, 305




What Colocalization in Fluorescence Microscopy

cannot prove information about protein/molecules interaction or binding
(but may provide evidence for)

We can detect where the fluorescence signal is

Adapted from Xu et al, X
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resolution: the abllity to distinguish

objects that are separate in the sample
as separate from one another in the
Image of the sample




The Point Spread Function (PSF)
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Resolution Is limited
by the size of the PSF
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@Microcourses * 6.96K subscribers - 26 videos

We are a team of light microscopists from core facilities at Harvard Medical Schoc

nic.med.harvard.edu and 5 more links

Q Subscribed v

The microscope optics convolve NA — (ﬂ) Siﬂ Q)
" each point source in the specimen

with the PSF

The Point Spread Function . Numerical Aperture

/0K views * 5 years ago 82K views * 5 years ago
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Adapted form Jennifer Waters %1?



What Colocalization in Fluorescence Microscopy

cannot prove information about protein/molecules interaction or binding
(but may provide evidence for)

We can detect where the fluorescence signal is

Adapted from Xu et al, 2016




What is Colocalization in Fluorescence Microscopy

Co-expression: The
presence of two or more
fluorescent signals in the
same cell, indicating that
the corresponding
proteins or molecules are
expressed in the same
biological sample.

Co-occurrence: The
spatial overlap between
fluorescent signals,
suggesting that two or
more molecules or
stfructures are present in
the same region of the
cell.

Correlation: A
guantitative measure of
how the infensity of two
fluorescent signals
changes together across
the sample, helping to
determine it their
distributions are related.

Co-distribution: The
extent to which two or
more fluorescent signals
are distributed similarly
across different regions
of the cell.
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A digital image is a matrix of numbers!

136 106 152 179

109 209 236 179

103 179 189 132

123 186 192 169

102t oD JEst

Pixel = Picture Element %



How can we Measure Colocalization?

- Pixel Intensity-based methods for co-occurrence & correlation

- Object-based methods for co-expression & co-distribution (spatial statistics)




Pixel Intensity-based methods for Co-occurrence and Correlation

e The pixel values in the iImage are directly used in the evaluation of the correlation
e Canrequire thresholding/segmentation

52,00
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Pixel Intensity-based methods for Co-occurrence and Correlation

e The pixel values in the iImage are directly used in the evaluation of spatial correlation

255

Can require thresholding/segmentation

Cross-correlation

Red

Adapted form S Bolte , F P Cordelieres, 2006

s =8¢ "
0 Auto. lhr.G

Green

255

\/ Zi (Rz avg)zz (G Gavg)2

-raction of overlap (e.g. Manders' correlation coefficients)
ntensity correlation (e.g. Pearson’s or Spearman’s correlation coefficients)

Manders' correlation coefficients Manders' Coefficients
1.0
coloc coloc
ZiRi Zi Gi
and M2 —
ZiRi Zi Gi

M1=

Pearson's correlation coefficient

Z i (Ri avg)(G avg)

L EIgIR s




Channel 1

Channel 2

Scatter Plot

Composite
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Channel 1

Channel 2

Scatter Plot

more pixels

Composite
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Channel 1

Channel 2

Scatter Plot

all pixels

Composite
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Channel 1

Channel 2

Scatter Plot

all pixels

Composite
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Channel 1

Scatter Plot

visualize thresholds

Channel 2 Composite

Channel 1 threshold = 150

Channel 1 pixel values
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Channel 1

Scatter Plot

visualize thresholds

Channel 2 Composite

Channel 1 threshold = 150

Channel 2 threshold = 140
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Intensity/Pixel-based: Pearson’s correlation coefficient (correlation)

Zi (R; — Ry )G — G, To measure the degree of linear correlation

'p = » > between the intensities of two signals across the
\/Zi (R; — Ravg) Zi (Gi = Gavg) entire Image, pixel by pixel (no spatial).

How well are the points fit to a line (linear correlation)<

How well can | predict the intensity change of channel |
(y) based on the intensity change of channel 2 (x)<

o N 03 00
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- R, )(G;—G,,,) To measure the degree of linear correlation
between the intensities of two signals across the
)22 (G;— G,,,)? L . .
Ravg avg entfire Image, pixel by pixel.
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- R, )(G;—G,,,) To measure the degree of linear correlation
between the intensities of two signals across the
)22 (G;— G,,,)? L . .
Ravg avg entfire Image, pixel by pixel.
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100 | 90

701152 Zi (Rz avg)zz (G Gan)2

200|190

90 | 80

200+1920+90+80
4

= 140

200-140{190-140

(R; —

= G; —
~ Ravg) 90-140 | 80-140 Ravg)(

avg) =

1004904704152 _ . 2, (R — R, )(G; —
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* \/ Zi (Ri avg)zz (G Gavg)2 =

= \/ 12200 x 3668 = 6689.51

-2120
6639.51

=-0.317

Boenes
=
Channel 2 %ﬁf




Intensity/Pixel-based: Pearson’s correlation coefficient (correlation)

250 |
- . .-.‘.:.:.'”l::....n.; -;
B 200 | g | 190
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D e e X TH 100
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% 50
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0" 0

0 100 200
Color 1 Pixel Intensity

'p =0.76 ECGFR and Rabl13 concentratfions predict each other relatively well, indicafing o
concentration-dependent relationship between these molecules.

'-V Adapted form Aaron et al, 2018
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Intensity/Pixel-based: Pearson’s correlation coefficient (correlation)

Pixel Randomization

Original Channel 2 Randomized Channel 2 (Iteration 1)
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Intensity/Pixel-based: Pearson’s correlation coefficient (correlation)

Channel 1

Scatter plot
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Intensity/Pixel-based: Pearson’s correlation coefficient (correlation)

Channel 1

Scatter plot
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Bleedthrough
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Intensity/Pixel-based: Pearson’s correlation coefficient (correlation)

Uneven lllumination

Channel 1 Channel 2 Composite Image Channel 1

Scatter plot Correlation Coefficient Scatter plot
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Intensity/Pixel-based: Pearson’s correlation coefficient (correlation)

Channel 1
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Data Interpretation

plot your dato

..-"{;:‘: X Mean: 54.26
:'° B~ Y Mean: 47.83
B X SD : 16.76
. , -' o Y SD : 26.93
.'."“‘:.“ ..:0.... Sequential dinosaur git =0 . 06
| "ol syees
R Datasaurus Dozen dataset

hitps.//www.research.autodesk.com/publications/same-stats-different-graphs/




Intensity/Pixel-based: Manders’ correlation coefficients (co-occurrence)

To measure the degree of spatial overlap between two signals.

To measure the proportion of pixel intensity in one channel that overlaps with pixel
intensity in the other channel.

M1 and M2 range between 0 and 1

Z Rgoloc Z Gpoloc
M, = — l and M, = —

Zi Ri

. gdanders' Coefficients

l
Zi Gi
'Ri if Gi> Gur and Ri> Rinr
0 otherwise

' G; if Ri>Rur and Gi> G
0 otherwise

0.8 -

where Rlcoloc —
0.6 -

where Gl-coloc — -

0.4 1

0.2 -

M1 = fraction of channel 1 that co-occurs with channel 2

0.0 -

52,00

& 9 M2 = fraction of channel 2 that co-occurs with channel 1
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Set a threshold for channel 1:
consider only pixel with a value > 75

Set a threshold for channel 2
consider only pixel with a value > 45

200+90=290
= 0.62
200+90+100+76= 466
150+150=300
=0.5

100+90+60+150+50+150=600

g,




Intensity/Pixel-based: Mander’s correlation coefficients (co-occurrence)

Set a threshold for channel 1:
consider only pixel with a value > 75

Set a threshold for channel 2
consider only pixel with a value > 45

e Mander's M1 and M2 can be different from
each other

M1 =0.62

M2 =0.5




Intensity/Pixel-based: Mander’s correlation coefficients (co-occurrence)

Set a threshold for channel 1:
consider only pixel with a value > 75

Set a threshold for channel 2
consider only pixel with a value > 45

e Mander's M1 and M2 can be different from
each other

M1 =0.62 | . Mander's M1 and M2 # ratio of areas

INn the magenta channel we have 2 pixel in
the overlap region (yellow) out of 4 total,

thus the 50%, but M1 is 62% since we take
INfo consideration the intensity values.

M2 =0.5 In the green channel we have 2 pixel in
the overlap region (cyan) out of é total,

thus the ~33%, but M2 is 50% since we take
INfo consideration the intensity values.
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Intensity/Pixel-based: Pearson’s correlation coefficient (correlation)

vy

250 |

LY .:.'.-. ;'.. ‘._..': 1 50

Wy | 100

50

Color 2 Pixel Intensity

0 100 200
Color 1 Pixel Intensity

'p =0.76 ECGFR and Rabl13 concentratfions predict each other relatively well, indicafing o
concentration-dependent relationship between these molecules.

M1 =099 Qll of the EGFR signal overlaps with that of Rab13, not all Rab13 co-occurs with EGFR.
This suggests that, although Rab 13 may associate with EGFR, it may also be associated

M2=0.44  \iith other molecules at different cellular locations.

Adapted form Aaron et al, 2018
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Intensity/Pixel-based: Pearson’s correlation coefficient (correlation)

0.8 -

Manders Coefficient

0.6 -

Individual Transformation Results (M1 p-value: 0.0000, M2 p-value: 0.0000)

0°(no-rotation)

- = no-rotation M1 (0°)
- == no-rotation M2 (0°)

90° 90° flip_h 90° flip_ v 180° 180° flip_h 180° flip v 270°
Transformation

—
o
o

>
-
c
[
S
o
@
&

~
w
1

w
o
1

N
w
1

o

Block Scrambling

Image Translation

Distribution of Random M1 Values

0.00

0.05

0.10

0.15 0.20
M1 Values

B Random M1
-== QObserved M1

0.25 0.30 0.35

Frequency

(o0}
o
1

(=)}
o
1

Distribution of Random M2 Values

0.4
M2 Values

B Random M2
-== QObserved M2

L EIgIR s




Intensity/Pixel-based: Mander’s correlation coefficients (co-occurrence)

Highly depends on threshold

Channel 1 Channel 2 Composite Scatter plot (in Mask) Channel 1 Channel 2 Composite Scatter plot (in Mask)
| IO | .
| 255, R
~ 200 7 _, 200 -
: @
£ 100 - ' % 100 -
0 A l 1 ' ' 0 T T L T
0 100 200 0 100 200
Channel 1 Mask Channel 2 Mask Overlap channel s Channel 1 Mask Channel 2 Mask Overlap channel 1
Manders' Coefficients Manders' Coefficients
1.0 1.0
0.8 - 0.8 -
0.6 - 0.6 -

Channel 1 in Overlap Channel 2 in Overlap Composite

Channel 1 in Overlap Channel 2 in Overlap Composite

o N

0.4 0.4 -

0.2 0.2

0.0 - 0.0 -
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Intensity/Pixel-based: Mander’s correlation coefficients (co-occurrence)

Costes Auto-Threshold

Green intensity (15)

be

Red intensity (1)

Costes et all., Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells

IV EIgIR B[S




Intensity/Pixel-based: Mander’s correlation coefficients (co-occurrence)

Noise
Channel 1 Channel 2 Composite Scatter plot (in Mask) Channel 1 Channel 2 Composite Scatter plot (in Mask)
., 200 - o o AR — PR
U . 3 B e
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Intensity/Pixel-based: Mander’s correlation coefficients (co-occurrence)

Bleedthrough
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Intensity/Pixel-based: Mander’s correlation coefficients (co-occurrence)

Uneven lllumination

Channel 1 Channel 2 Composite Scatter plot (in Mask) Channel 1 Channel 2 Composite Scatter plot (in Mask)
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Intensity/Pixel-based: Mander’s correlation coefficients (co-occurrence)

Chromatic Shift

Channel 1 Channel 2 Composite Scatter plot (in Mask) Channel 1 Channel 2 Composite Scatter plot (in Mask)
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Summary

Coloclization in fluorescence microscopy cannot prove molecular interaction

AS with any other fluorescence microscopy experiments, it Is important to...

- use a suitable fluorescence microscopy fechnique fto study colocalization
(resolution, optical sectioning, ...)

- perform controls (e.g bleedthrough, chromatic shift, ...)

- have an idea on how to approach the image analysis before acquiring the dato

Image pre-processing is likely heeded before analyzing your data (noise, uneven
llumination, background...)

The colocalization analysis method depends on the data and on the question we are
frying to answer. Interpreting the results can be hard. Perform stafistical analysis.

Report how you did the analysis (*Analysis was performed with ImageJ.” is not a good

way to report what you did) i;w




Spatial statistics: Object-based
colocalization




Points : L
¢ o “°, .0 $ e > “eoce *
» Represented as coordinates B LSRR
¢ @ . . o o.
» Obtained by extracting coordinates* . . eet et
* Example: Membrane proteins . ," ¢ o7 en,
Y . . .
l x o
Y S a0,

Extracting coordinates — examples:
Spotiflow: Dominguez Mantes, A., Herrera, A., Khven, |. et al. Spotiflow: accurate and efficient spot detection for fluorescence microscopy with deep

stereographic flow regression. Nat Methods 22, 1495—-1504 (2025). https://doi.org/10.1038/s41592-025-02662-x

SMLM fitting in Python: E.g. https://github.com/ZhuanglLab/storm-analysis
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https://doi.org/10.1038/s41592-025-02662-x
https://github.com/ZhuangLab/storm-analysis

What are (2D) objects?

Lines
 Geometrically: length, but no width
* Obtained by segmentation

 Example: A tissue boundary

52,00
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What are (2D) objects?

Bounded regions
* Have an area O O
* Obtained by segmentation

(Cellpose, StarDist, ...) O @ O
 Example: Nuclel, vesicles... O

Cellpose-SAM: superhuman generalization for cellular segmentation
Marius Pachitariu, Michael Rariden, Carsen Stringer

bioRxiv 2025.04.28.651001; doi: https://doi.org/10.1101/2025.04.28.651001

M. Weigert and U. Schmidt, "Nuclei Instance Segmentation and Classification in Histopathology Images with Stardist," 2022 IEEE International Symposium on Biomedical Imaging
Challenges (ISBIC), Kolkata, India, 2022, pp. 1-4, doi: 10.1109/ISBIC56247.2022.9854534.

keywords: {Deep learning;Image segmentation;Histopathology;Microscopy;Fluorescence;Colon;Task analysis;image segmentation;challenge;deep learning;histopathology},
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What are (2D) objects?

* Points
 Lines
 Bounded regions

O
» Objects can appear together NV oD
D,




What are (2D) objects?

Points

Lines

Bounded regions O

Objects can appear together Q o D
O

Objects can often be derived from
one another




What are (2D) objects?

Or more simply: An object is anything you can count!

O
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o Spatial statistics deals with spatial data

 [These data can be objects
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atistics on
OLJ ects

o Spatial statistics deals with spatial data
 [hese data can be objects

* Objects can be of more than one class
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What is “object-based” colocalization

e Colocalization is an illusion of the
diffraction limit of microscopy

e Colocalization does not exist!

_SPQ‘{\ al
54“+IS4ICS oN |
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What is “object-based” colocalization

» Extracting objects often allows us to rephrase colocalization questions as
spatial statistics questions

52,00




Recap: Intensity-based coloc

Intensity-based coloc
255

Segmentation

Controls
Resolution

Thresholding

Channel 2

255

Channel 1

Data: Image set BBBC014v1 provided by llya Ravkin, available from the Broad Bioimage Benchmark Collection [dx.doi.org/10.1038/nmeth.2083].

L EIgIR s



https://bbbc.broadinstitute.org/bbbc/BBBC014
http://dx.doi.org/10.1038/nmeth.2083

Intensity-based vs. Object-based coloc

Purely intensity-based Object-based

-y

Data: Image set BBBC014v1 provided by llya Ravkin, available from the Broad Bioimage Benchmark Collection [dx.doi.org/10.1038/nmeth.2083].

52,00



https://bbbc.broadinstitute.org/bbbc/BBBC014
http://dx.doi.org/10.1038/nmeth.2083

Intensity-based could discard spatial information

255
R=0.77

Channel 2

0 255
Channel 1

Data: Image set BBBC014v1 provided by llya Ravkin, available from the Broad Bioimage Benchmark Collection [dx.doi.org/10.1038/nmeth.2083].



https://bbbc.broadinstitute.org/bbbc/BBBC014
http://dx.doi.org/10.1038/nmeth.2083

Object based analysis discards intensity-values

&



https://bbbc.broadinstitute.org/bbbc/BBBC014
http://dx.doi.org/10.1038/nmeth.2083

Intensity-based vs. Object-based coloc

Purely intensity-based Object-based

R

A A A A
Only pixel Thresholding Segmentation Discards pixel
Intensity values Intensity values
alile' LT

V Y Data: Image set BBBC014v1 provided by llya Ravkin, available from the Broad Bioimage Benchmark Collection [dx.doi.org/10.1038/nmeth.2083]. 3}5‘;
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When to use object-based methods

Segmentation difficult * Objects are discrete & segmentable

Two HIV components in HelLa cealls Neuronal dendrites (plue)
and synapt (green)
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O O Wang S, Arena ET, Becker JT, Bement WM, Sherer NM, Eliceiri KW, Yuan M. Spatlally Adaptive Modified from: S. Mukherjee, C. Gonzalez-Gomez, L. Danglot, T. Lagache and J. -C. Olivo-Marin, ~

V 'r Colocalization Analysis in Dual-Color Fluorescence Microscopy. IEEE Trans Image Process. 2019 Apr "Generalizing the Statistical Analysis of Objects’ Spatial Coupling in Bioimaging,” in [EEE Signal Processing
4. doi: 10.1109/TIP.2019.2909194. Epub ahead of print. PMID: 30951467. Letters, vol. 27, pp. 1085-1089, 2020, doi: 10.1109/LSP.2020.3003821.




When to use object-based methods

Often in diffraction limited settings » Often in super-resolution settings

Iwo HIV components In mela cells Distance petween signalling proteins
N SMLM, scale bar B: 200 nm
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Wang S, Arena ET, Becker JT, Bement WM, Sherer NM, Eliceiri KW, Yuan M. Spatlally Adaptive Modified from: Simao Coelho et al., Ultraprecise single-molecule localization microscopy enables in situ ~

" 'V Colocalization Analysis in Dual-Color Fluorescence Microscopy. IEEE Trans Image Process. 2019 Apr distance measurements in intact cells.Sci. Adv.6,eaay8271(2020).DOI:10.1126/sciadv.aay8271
4. doi: 10.1109/T1P.2019.2909194. Epub ahead of print. PMID: 30951467.
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When to use object-based methods

Statistical quantities * Physical quantities

“What correlation™  “What distance”, "How many”
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Wang S, Arena ET, Becker JT, Bement WM, Sherer NM, Eliceiri KW, Yuan M. Spatlally Adaptive Modified from: Simao Coelho et al., Ultraprecise single-molecule localization microscopy enables in situ ~
" 'V Colocalization Analysis in Dual-Color Fluorescence Microscopy. IEEE Trans Image Process. 2019 Apr distance measurements in intact cells.Sci. Adv.6,eaay8271(2020).DOI:10.1126/sciadv.aay8271
4. doi: 10.1109/T1P.2019.2909194. Epub ahead of print. PMID: 30951467.
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Object-based coloc: workflow

Intensity-based coloc
255

Segmentation

Controls
Resolution

Thresholding

Channel 2

255

Channel 1

Data: Image set BBBC014v1 provided by llya Ravkin, available from the Broad Bioimage Benchmark Collection [dx.doi.org/10.1038/nmeth.2083].
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Object-based coloc: workflow

Intensity-based coloc
255

Segmentation

Controls
Resolution

Thresholding

Channel 2

255

Channel 1

Data: Image set BBBC014v1 provided by llya Ravkin, available from the Broad Bioimage Benchmark Collection [dx.doi.org/10.1038/nmeth.2083].
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Object-based coloc: workflow

Object-based coloc
Segmentation
Spot-detection

Data: Image set BBBC014v1 provided by llya Ravkin, available from the Broad Bioimage Benchmark Collection [dx.doi.org/10.1038/nmeth.2083].
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Object-based coloc: workflow

Object-based coloc
Segmentation
Spot -detection

o 0300y

Bleedthrough
Chromatic aberration
Controls

Resolution

}zﬁ
' V Data: Image set BBBC014v1 provided by llya Ravkin, available from the Broad Bioimage Benchmark Collection [dx.doi.org/10.1038/nmeth.2083]. 3}5
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Example: Area

Protein A
Protein B1

Protein B2: ?

Modified from: Molecular Anatomy of a Trafficking Organelle; Takamori, Shigeo et al.; Cell, Volume 127, Issue 4, 831 - 846



~ PSF

Rl

Modified from: Molecular Anatomy of a Trafficking Organelle; Takamori, Shigeo et al.; Cell, Volume 127, Issue 4, 831 - 846



Example: Area

Original

o 08 {60/ JES)

'.Y Modified from: Gilles et al.; DiAna, an Imaged tool for object-based 3D co-localization and distance analysis, Methods, Volume 115, 2017, Pages 55-64



Example: Area

Original Segmented

o 08 {60/ JES)

'.Y Modified from: Gilles et al.; DiAna, an Imaged tool for object-based 3D co-localization and distance analysis, Methods, Volume 115, 2017, Pages 55-64



Example: Area

Original Segmented
- '".;.:I !jl i, ’

100

o0
o

% of colocalisation
N AN DN
(e ) (e o

o

o N

V.V Modified from: Gilles et al.; DiAna, an Imaged tool for object-based 3D co-localization and distance analysis, Methods, Volume 115, 2017, Pages 55-64
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Example: Points

Original Segmented
- N

o 08 {60/ JES)

V.V Modified from: Gilles et al.; DiAna, an Imaged tool for object-based 3D co-localization and distance analysis, Methods, Volume 115, 2017, Pages 55-64



Example: Points

Original Segmented
- '".;.:I !jl i, ’

Remember:

Ob jects can
somekimes be
nkerconverted!

o 08 {60/ JES)

V.V Modified from: Gilles et al.; DiAna, an Imaged tool for object-based 3D co-localization and distance analysis, Methods, Volume 115, 2017, Pages 55-64



Example

Original Segmented
- '".;.:I !jl i, ’

0.6

04

center to center distances

o 08 {60/ JES)

V.V Modified from: Gilles et al.; DiAna, an Imaged tool for object-based 3D co-localization and distance analysis, Methods, Volume 115, 2017, Pages 55-64



Example: Points to Edges




Example: Points to Edges




Example: Points to Edges

| LL
o
- |

Dist to edge




Statistical validation: Comparison to known
controls

Which hypothesis explains the condition better:
+ CTRL: Hypothesis A
- CTRL: Hypothesis B

Condition + CTRL - CTRL

o N 03 00

'.Y Modified from: Gilles et al.; DiAna, an Imaged tool for object-based 3D co-localization and distance analysis, Methods, Volume 115, 2017, Pages 55-64 "’);;
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Statistical validation - Comparison to Null

Question: Is the overlap happening by pure chance?
Formulate HO: Any overlap we’re seeing is a coincidence

Use -CTRL, where overlap is a coincidence

And/OR: Simulate what HO would look like




Statistical validation

Q: Is the overlap between cyan and magenta pure chance”?

HO: Any overlap between cyan and magenta we’re seeing is a coincidence!




Statistical validation

Q: Is the overlap between cyan and magenta pure chance?
HO: Any overlap between cyan and magenta we’re seeing is a coincidence!

> Simulate what HO would look like




Statistical validation

Randomly shuffle blue objects to simulate HO




Statistical validation

o _ 0

Randomly shuffle blue objects to simulate HO




Statistical validation

Randomly shuffle blue objects to simulate HO




Statistical validation

© @ Shuffle x N

— Observed

— Confidence interval _

Shuffled
— Mean distribution

cumulated frequency
—
[ g |

U.D | — 1 1 1 1 1 l 1 1 1 1 I 1 1 1 1 I
O N 0.0 0.5 1.0 1.3 2.0 L EIgIR s

distance
V.V Modified from: Gilles et al.; DiAna, an Imaged tool for object-based 3D co-localization and distance analysis, Methods, Volume 115, 2017, Pages 55-64




Statistical validation

1.0 || | | 1 1 I | || 1 | | I 1 l- | _;‘___
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E gs — Confidence interval _
= 0.
- Shuffled :
= — Mean distribution -
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DD ] § 1 1 | | 1 1 1 I 1

0.0 0.5 1.0 1.5 2.0
distance
o 500 28

V.Y Modified from: Gilles et al.; DiAna, an Imaged tool for object-based 3D co-localization and distance analysis, Methods, Volume 115, 2017, Pages 55-64
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