Eva de la Serna, PhD Advanced Microscopy Postdoc Fellow

Slides & feedback from Team CITE & IAC!

Today's Focus:

Example Dataset

Analysis Goal: Make a measurement on images of nuclei

To measure nuclei properties, we need to **select** each individual nucleus. This process is called *image segmentation*.

2 types of segmentation: Semantic & Instance

Raw Image

Semantic Segmentation

All objects treated as the same category

Example:

Categories: Nucleus

Instance Segmentation

We can achieve either segmentation type with different *pipelines*.

3 pipelines: Classic, Machine Learning (ML), & Deep Learning (DL)

The **classic pipeline** takes advantage of an image's spatial organization of intensity values

6	13	19	6	19	13	9	19	9	6	9	6	16	16	6	16	13	132	229	103	19	16	13	23	9	9
19	19	6	13	13	13	13	16	16	19	9	13	9	6	16	16	49	192	216	106	23	13	16	16	23	13
13	9	4	13	13	16	19	36	66	93	79	26	13	13	6	16	113	209	196	113	29	19	36	49	36	33
19	13	19	13	16	13	26	89	123	136	152	116	76	33	13	46	159	162	159	126	79	96	189	229	226	212
16	16	9	6	13	19	26	93	156	179	106	66	79	136	106	152	179	93	29	13	16	23	79	156	123	49
16	6	13	13	16	13	23	69	103	69	19	16	6	109	209	236	179	43	9	16	9	13	13	19	13	13
9	9	16	19	13	13	19	13	26	16	16	13	6	103	179	189	132	33	19	16	16	9	9	6	6	6
13	9	4	13	13	13	16	19	13	23	6	16	23	123	186	192	169	126	26	16	19	13	6	13	16	13
13	13	9	16	9	6	13	19	16	19	6	19	63	199	192	106	29	149	162	113	119	53	9	13	6	13
13	9	16	6	6	19	13	9	23	13	9	6	119	182	149	36	6	39	196	196	176	73	16	9	9	9
6	19	13	9	19	16	13	13	19	9	9	23	142	179	109	13	16	9	39	59	23	19	13	4	9	9
19	13	9	9	16	16	16	9	9	13	6	66	169	172	43	16	9	9	9	13	13	19	16	16	16	9
9	9	6	9	13	9	6	13	4	9	19	116	196	89	9	9	16	16	19	19	9	16	6	16	9	9
13	13	9	23	19	13	9	9	9	6	26	159	219	59	23	9	13	9	6	13	6	19	16	13	16	13
9	23	13	6	6	23	9	19	13	16	66	206	179	13	6	16	13	13	13	16	9	13	9	9	16	13
13	13	23	16	19	19	6	9	19	13	142	255	103	19	13	6	19	9	16	9	16	9	16	13	23	9
6	13	23	9	13	16	13	6	9	53	229	246	39	9	13	13	13	13	9	9	19	13	16	13	13	13
13	19	59	76	26	9	16	16	13	99	249	142	6	19	13	13	13	13	19	4	13	13	6	26	9	13
16	113	229	219	93	9	26	83	23	159	219	59	9	9	6	13	16	13	16	13	6	9	9	16	23	9

photons optical image

intensity values digital image

intensity values ≠ photons!!

thresholding

filtering

labeling a binary mask

refining a binary mask

thresholding

filtering

labeling a binary mask

refining a binary mask

Original Image

Nuclei regions have higher intensity values than non-nuclei regions in the image

thresholding

select a range of digital values in the image

thresholding

select a range of digital values in the image

8 bit image (0 - 255)*

*8 bit image = each pixel can have 2⁸ grey values = 256 grey values = range 0-255

The result of the thresholding process is a binary mask

A binary mask is an image that has only 2 pixel values

FIJI's binary masks have 0 and 255 values.

2 ways to set a threshold

Thresholding by manually setting a min intensity count Image Histogram min intensity cutoff above decided by YOU cutoff below cutoff Thresholding by **automatically** setting a min intensity count using a thresholding algorithm Image Histogram min intensity cutoff decided by Otsu algorithm

below cutoff

Use thresholding algorithms so that thresholding will be reproducible across many images.

Thresholding in Python

Thresholding by **manually** setting a min intensity count

[1]: threshold = 50 # intensity value cutoff binary_mask = raw_image > threshold

binary_mask

F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т
F	F	F	F	т	т	т	т	т	т	т	т	т	т	т	т	т	т

False: "discarded" pixels True: selected pixels

Thresholding in Python

Thresholding by **manually** setting a min intensity count

[1]: threshold = 100 # intensity value cutoff binary_mask = raw_image > threshold

Thresholding in Python

Thresholding by **automatically** setting a min intensity count using a thresholding algorithm

[1]: # use Otsu thresholding algorithm
from skimage.filters import threshold_otsu
binary_mask = raw_image >
 threshold_otsu(raw_image)

False: "discarded" pixels True: selected pixels

Usually if you apply thresholding to the original image, you won't precisely select all or only pixels of interest

Many factors can contribute to variance in pixel values:

fluorescence label (e.g. DAPI)	background (uneven illumination, out of focus light, aberration)
detector offset	noise (detector read noise, poisson noise, etc.)

thresholding

labeling a binary mask

refining a binary mask

filtering

Change image pixel values using a *mathematical operation* to smooth and reduce noise from images.

filtering

Change image pixel values using a *mathematical operation* to smooth and reduce noise from images.

we are mathematically changing this image's pixel values when we apply a filter.

How most filters work mathematically

Convolve an image with a 3x3 kernel

Convolve an image with a 5x5 kernel

k₂₁ k₂₂

k24

623

k25

When you apply a filter, you can specify the kernel size you are convolving with.

examples of filters good at reducing noise

mean filter

Gaussian blur filter

median filter

mean filter

sum values in a list and then divide by total number of values

Footprint refers to the kernel size.

3x3 kernel

Larger Footprint = Bigger Kernel = Higher Blur

examples of filters good at reducing noise

Gaussian blur filter

multiply each value by Gaussian profile weighting, then divide by total number of values

Sigma refers to the kernel size.

Sigma 1 = 5x5 kernel

	1	4	7	4	1
	4	16	26	16	4
273	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

How is a *mean filter* different from a *Gaussian blur filter*?

gaussian blur filter

multiply each value by gaussian profile weighting, then divide by total number of values

Higher Sigma = Bigger Kernel = Higher Blur

examples of filters good at reducing noise

median filter

take the middle number in a sorted list of numbers

Footprint refers to the kernel size.

Apply a median filter with 3x3 kernel. What is the value of the central pixel in the filtered image?

Look at all of the numbers in this kernel size and find the middle value

[103, 106, 109, 136, **152**, 179, 189, 209, 236]

median filter

take the middle number in a sorted list of numbers

Bigger Kernel = Higher Blur Median filters don't use convolution!

examples of filters good at reducing noise

Thinking about filter math can take some time to get used to.

Which filter should you choose?

Choose the filter parameters that give you the best binary mask result

choose the combination that gives you the best binary mask result

Filtering in Python

Gaussian blur filter

[1]: # use Gaussian blur filter from skimage.filters import gaussian filtered_image = gaussian(raw_image)

thresholding algorithm

[]: # use Otsu thresholding algorithm binary_mask = filtered_image > threshold_otsu(filtered_image)

Now what do we do with the binary mask?

2 types of segmentation: Semantic & Instance

Raw Image

Semantic Segmentation

All objects treated as the same category

Example:

Categories: Nuclei

Instance Segmentation

Each object is distinguished as separate and has a unique label

Example:

Categories: Nucleus 1 Nucleus 2 Nucleus 3

. . .

We need to do another step to accomplish this.

classic segmentation with Python

Now that we have a binary mask, we need a way to *distinguish individual objects of interest* in the mask

Categories: Nucleus

Categories:

- Nucleus 1
- Nucleus 2
- Nucleus 3

. . .

Labeling a mask in Python

labeling a mask

[]: from skimage.measure import label labeled_image = label(binary_mask)

What if the binary mask isn't perfect?

2 or more nuclei in the binary mask image are touching each other, resulting in them being considered as a single object.

classic segmentation with Python

Sometimes binary masks need to be *refined*

mask refinement: additional processing steps applied to a binary mask to more accurately match the image foreground.

common problems:

touching objects

Watershed Algorithm: useful for separating touching objects.

The name watershed is inspired by how a drop of water falls along a surface

The name watershed is inspired by how a drop of water falls along a surface

the **watershed line** separates which basin the water will go to

Calculate how far each white pixel is from the nearest black pixel

the resulting image is called a *distance transform*

from scikit-image.org

Let's study this distance transform...

The largest distance values are in the *centers* of the 2 objects

the watershed algorithm, in summary:

calculate the distance transform

calculate distance transform
from scipy.ndimage import distance_transform_edt
distance_transform =

distance_transform_edt(binary_image)

[1]:

find the peak coordinates in the distance transform

[]:

create a labeled image with the peaks

[]:

label the image with the peaks to create seeds

label local_maxima_image seeds = label(local_maxima_image)

[]:

give the watershed algorithm the distance transform, the seeds, and the binary mask

[]: # perform watershed from skimage.segmentation import watershed labeled_image = watershed(-distance_transform, seeds, mask = binary_mask)

2 types of segmentation: Semantic & Instance

Raw Image

Semantic Segmentation

All objects treated as the same category

Example:

Categories: Nuclei

Instance Segmentation

Each object is distinguished as separate and has a unique label **Example:**

Categories: Nucleus 1

Nucleus 2

Nucleus 3

. . .

Lab: Classic Segmentation Notebook, Steps 0-5

Statistically relevant & reproducible measurements come from analyzing many fluorescence images.

We need to analyze enough images to represent an entire cell population

25 widefield images to analyze

classic segmentation with Python

processing many images

Processing many images in Python

We use a for loop to run same processing steps on each image!

Processing many images in Python

Organize all images to process in 1 folder.

Use a **for** loop to loop through image paths.

loop through image paths to get each image
from pathlib import Path
folder_dir = Path("/Users/edelase/bobiac")
for image_path in folder_dir.iterdir():
 # do classic processing steps

[]:

Processing many images in Python

Use a **for** loop to loop through *only tif* image paths in a folder.

[]: # loop through only tif image paths
from pathlib import Path
import glob
folder_dir = Path("/Users/edelase/bobiac")
for image_path in folder_dir.glob("*.tif"):
 # do classic processing steps

what about saving images?

Saving images in Python

Use a **tifffile.imwrite()** to save output images.

[]: # save an image import tifffile from pathlib import Path output_dir = Path("/Users/edelase/output") output_filepath = output_dir / "output file.tif" tifffile.imwrite(output_filepath, image.astype("uint32"))

Why won't this work in our image paths for loop?

Saving images in Python

Use **f"{image_path.stem}_.tif"** to automatically generate file names for each loop

```
[]: # save an image
    import tifffile
    from pathlib import Path
    import glob
    input_dir = Path("/Users/edelase/input")
    output_dir = Path("/Users/edelase/output")
    for image_path in input_dir.glob("*.tif"):
      output_filepath = output_dir /
                       f"{image_path.stem}_.tif"
      tifffile.imwrite(output_filepath,
                       image.astype("uint32"))
```

Lab: Classic Segmentation Notebook, Step 6

classic segmentation with Python

processing many images

General resources

Questions?

