
Classic Segmentation
with Python

Eva de la Serna, PhD
Advanced Microscopy Postdoc Fellow

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Jennifer Waters
Director

Talley Lambert
Associate Director

Imaging Technology

Slides & feedback from Team
CITE & IAC!

Anna Jost
Associate Director
Imaging Education

Eva de la Serna
Postdoc Fellow

Asemare Taddese
Postdoc Fellow

Federico Gasparoli
Research Associate

Maria Theiss
Postdoc Fellow

Ranit Karmakar
Postdoc Fellow

Simon Nørrelykke
Director

Antoine Ruzette
Associate

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Model System

What sample can I
prepare that will

let me address my
question?

ImagesExperiment

Can I design an
experiment using

fluorescence microscopy
to address my question?

+
Results

Biological Question

?
hypothesis

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Today’s Focus:

Images Results

Image
Processing

Image
Analysis

Analysis Goal: Make measurements on objects in images

Processing Goal: Select individual objects in images

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Fluorescence images of mammalian cell monolayer

DAPI: a fluorophore that binds to minor grooves of dsDNA

Widefield fluorescence images

WHAT

LABEL

DATASET DAPI is a nuclear
marker!

Example Dataset

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

To measure nuclei properties, we need to select each individual
nucleus. This process is called image segmentation.

Original Image

Analysis Goal: Make a measurement on images of nuclei

Segmented Image

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

2 types of segmentation: Semantic & Instance

Semantic Segmentation
All objects treated as the same category

Instance Segmentation
Each object is distinguished as separate

and has a unique label

We can achieve either segmentation type with different pipelines.

Categories:

Example:

Nucleus
Categories:

Example:

Nucleus 1
Nucleus 2
Nucleus 3

…

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

3 pipelines: Classic, Machine Learning (ML), & Deep
Learning (DL)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

photons
optical image

6 13 19 6 19 13 9 19 9 6 9 6 16 16 6 16 13 132 229 103 19 16 13 23 9 9

19 19 6 13 13 13 13 16 16 19 9 13 9 6 16 16 49 192 216 106 23 13 16 16 23 13

13 9 4 13 13 16 19 36 66 93 79 26 13 13 6 16 113 209 196 113 29 19 36 49 36 33

19 13 19 13 16 13 26 89 123 136 152 116 76 33 13 46 159 162 159 126 79 96 189 229 226 212

16 16 9 6 13 19 26 93 156 179 106 66 79 136 106 152 179 93 29 13 16 23 79 156 123 49

16 6 13 13 16 13 23 69 103 69 19 16 6 109 209 236 179 43 9 16 9 13 13 19 13 13

9 9 16 19 13 13 19 13 26 16 16 13 6 103 179 189 132 33 19 16 16 9 9 6 6 6

13 9 4 13 13 13 16 19 13 23 6 16 23 123 186 192 169 126 26 16 19 13 6 13 16 13

13 13 9 16 9 6 13 19 16 19 6 19 63 199 192 106 29 149 162 113 119 53 9 13 6 13

13 9 16 6 6 19 13 9 23 13 9 6 119 182 149 36 6 39 196 196 176 73 16 9 9 9

6 19 13 9 19 16 13 13 19 9 9 23 142 179 109 13 16 9 39 59 23 19 13 4 9 9

19 13 9 9 16 16 16 9 9 13 6 66 169 172 43 16 9 9 9 13 13 19 16 16 16 9

9 9 6 9 13 9 6 13 4 9 19 116 196 89 9 9 16 16 19 19 9 16 6 16 9 9

13 13 9 23 19 13 9 9 9 6 26 159 219 59 23 9 13 9 6 13 6 19 16 13 16 13

9 23 13 6 6 23 9 19 13 16 66 206 179 13 6 16 13 13 13 16 9 13 9 9 16 13

13 13 23 16 19 19 6 9 19 13 142 255 103 19 13 6 19 9 16 9 16 9 16 13 23 9

6 13 23 9 13 16 13 6 9 53 229 246 39 9 13 13 13 13 9 9 19 13 16 13 13 13

13 19 59 76 26 9 16 16 13 99 249 142 6 19 13 13 13 13 19 4 13 13 6 26 9 13

16 113 229 219 93 9 26 83 23 159 219 59 9 9 6 13 16 13 16 13 6 9 9 16 23 9

intensity values
digital image

intensity values ≠ photons!!

The classic pipeline takes advantage of an image’s spatial
organization of intensity values

classic segmentation with Python

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

classic segmentation with Python

filtering

labeling a binary mask

thresholding

refining a binary mask

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

classic segmentation with Python

filtering

labeling a binary mask

thresholding

refining a binary mask

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

thresholding

Original Image

Nuclei regions have higher intensity values
than non-nuclei regions in the image

select a range of digital values in the image
In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

8 bit image (0 - 255)*

*8 bit image = each pixel can have 28 grey values = 256 grey values = range 0-255

thresholding

select a range of digital values in the image

8 bit image (0 - 255)

A binary mask is an image that has only 2 pixel values

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img) FĲI’s binary masks have 0 and 255 values.

The result of the thresholding process is a binary mask

False: “discarded” pixels
True: selected pixels

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

binary_mask

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

2 ways to set a threshold
Thresholding by manually setting a

min intensity count
Image Histogram

min intensity cutoff

below cutoff

above
cutoff

Thresholding by automatically setting a
min intensity count using a thresholding algorithm

Image Histogram
min intensity cutoff

below cutoff

above
cutoffdecided by Otsu algorithm

decided by YOU

Use thresholding algorithms so that thresholding will be reproducible
across many images.

Thresholding in Python

[]:1
binary_mask = raw_image > threshold
threshold = 50 # intensity value cutoff

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

8 bit image (0 - 255)

Thresholding by manually setting a
min intensity count

False: “discarded” pixels
True: selected pixels

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

F F F F T T T T T T T T T T T T T T

binary_mask

Thresholding in Python

[]:1
binary_mask = raw_image > threshold
threshold = 100 # intensity value cutoff

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

8 bit image (0 - 255)

Thresholding by manually setting a
min intensity count

False: “discarded” pixels
True: selected pixels

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

binary_mask

Thresholding in Python

[]:1

binary_mask = raw_image >
threshold_otsu(raw_image)

from skimage.filters import threshold_otsu
use Otsu thresholding algorithm

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

raw_image

False: “discarded” pixels
True: selected pixels

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

F F F F F F F F F F F T T T T T T T

binary_mask

Thresholding by automatically setting a
min intensity count using a thresholding algorithm

Image Threshold Binary Mask

Usually if you apply thresholding to the original image, you
won’t precisely select all or only pixels of interest

Many factors can contribute to variance in pixel values:

fluorescence label (e.g. DAPI)

detector offset

background (uneven illumination, out of focus light, aberration)

noise (detector read noise, poisson noise, etc.)

filtering

labeling a binary mask

thresholding

refining a binary mask

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

classic segmentation with Python

filtering
labeling a binary mask

thresholding

refining a binary mask

filtering

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

classic segmentation with Python

filtering

Image Threshold Binary Mask

What if we apply an image filter
before thresholding?

Change image pixel values using a mathematical
operation to smooth and reduce noise from images.

Image Filtered Image

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

filtering

Change image pixel values using a mathematical
operation to smooth and reduce noise from images.

Image Filtered Image

we are mathematically changing this image’s pixel
values when we apply a filter.

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Convolve an image with a 3x3 kernel

3x3 kernelImage

px1 px2 px3

px4 px5 px6

px7 px8 px9

k1 k2 k3

k4 k5 k6

k7 k8 k9

pxn = pixel value kn = value

R

Filtered Image
(Only central pixel)

 px1 * (k1/ksum) = r1
+ px2 * (k2/ksum) = r2
+ px3 * (k3/ksum) = r3
+ px4 * (k4/ksum) = r4
+ px5 * (k5/ksum) = r5
+ px6 * (k6/ksum) = r6
+ px7 * (k7/ksum) = r7
+ px8 * (k8/ksum) = r8
+ px9 * (k9/ksum) = r9

R
ksum = sum of kn (k1 + k2 + k3 + …)

= ?

How most filters work mathematically

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Convolve an image with a 5x5 kernel

When you apply a filter, you can specify the kernel size you are
convolving with.

examples of filters good at reducing noise

median filter

mean filter

Gaussian blur filter

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

sum values in a list and then divide by total number of values

mean filter

Footprint refers to the kernel size.
3x3 kernel

1 1 1

1 1 1

1 1 1

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img) Larger Footprint = Bigger Kernel = Higher Blur

median filter

mean filter

Gaussian blur filter

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

examples of filters good at reducing noise

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

273

Gaussian FunctionImage 2D top view
of Gaussian Function

Gaussian blur filter

multiply each value by Gaussian profile weighting, then divide by
total number of values

Sigma refers to the kernel size.

Sigma 1 = 5x5 kernel

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

In a Mean Filter, the kernel
values are all the same

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

25

5x5 kernel

average: all pixels are given the same
weight.

How is a mean filter different from a Gaussian blur filter?

mean filter Gaussian blur filterVS.
In a Gaussian Blur Filter, the kernel

values follow a Gaussian profile

sigma = 1 5x5 kernel

weighted average: pixels nearest the
center of the kernel are given more weight

than those far away from the center.

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

273

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Image Filtered Image

autoscaled

gaussian blur filter

multiply each value by gaussian profile weighting, then divide by
total number of values

Higher Sigma = Bigger Kernel = Higher Blur

median filter

mean filter

Gaussian blur filter

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

examples of filters good at reducing noise

152? ?

136 106 152

109 209 236

103 179 189

209

[103, 106, 109, 136, 152, 179, 189, 209, 236]

take the middle number in a sorted list of numbers

median filter

Default = 3x3 kernel

Apply a median filter with 3x3 kernel.
What is the value of the central pixel in the filtered image?

Look at all of the numbers in this kernel
size and find the middle value

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

3x3 kernel

1 1 1

1 1 1

1 1 1

Footprint refers to the kernel size.

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

3x3 kernel

take the middle number in a sorted list of numbers

median filter

Bigger Kernel = Higher Blur
Median filters don’t use convolution!

median filter

mean filter

Gaussian blur filter

Thinking about filter math can take
some time to get used to.

examples of filters good at reducing noise

1 1 1

1 1 1

1 1 1

Mean

Gaussian Blur

No Filter

Median
[103

106
109

136
152

179
189

209
236]

Threshold Binary MaskFilter

ORIGINAL
image

Which filter should you choose?

1 2

vs

Choose the filter parameters that give you the best binary
mask result

test different filters

median filter

mean filter

gaussian blur filter …and different kernel sizes

choose the combination that gives you the best binary mask result

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

[]:
binary_mask = filtered_image >

threshold_otsu(filtered_image)

use Otsu thresholding algorithm

[]:

Filtering in Python
Gaussian blur filter

1

filtered_image = gaussian(raw_image)
from skimage.filters import gaussian
use Gaussian blur filter

thresholding algorithm

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Now what do we do with the binary mask?

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

2 types of segmentation: Semantic & Instance

Instance SegmentationSemantic Segmentation
All objects treated as the same category

Categories:

Example:

Nuclei

Each object is distinguished as separate
and has a unique label

Categories:
Example:

Nucleus 1
Nucleus 2
Nucleus 3

…

We need to do another step
to accomplish this.

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

filtering
labeling a binary mask

thresholding

refining a binary mask

filtering

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

classic segmentation with Python

Now that we have a binary mask, we need a way to
distinguish individual objects of interest in the mask

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Categories:
Nucleus

Categories:
Nucleus 1
Nucleus 2
Nucleus 3

…

Labeling a mask in Python

[]:

labeling a mask

from skimage.measure import label
labeled_image = label(binary_mask)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

What if the binary mask isn’t perfect?
Image Filter Threshold Binary Mask

2 or more nuclei in the binary mask image are touching each other,
resulting in them being considered as a single object.

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

filtering
labeling a binary mask

thresholding

refining a binary mask

filtering

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

classic segmentation with Python

Sometimes binary masks need to be refined
mask refinement: additional processing steps applied to a binary mask to more
accurately match the image foreground.

common problems:

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

miscellaneous schmutz holes inside objects touching objects

Morphological operations: a family of algorithms
that are helpful for modifying object shapes

Watershed Algorithm: useful
for separating touching
objects.

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

miscellaneous schmutz Morphological operations: a family of algorithms
that are helpful for modifying object shapes

opening

~ removes small objects from
foreground

[]: from skimage.morphology import remove_small_objects
binary_mask_sized = remove_small_objects(

binary_mask,minsize=10)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

holes inside objects Morphological operations: a family of algorithms
that are helpful for modifying object shapes

closing

~ fills small holes in foreground

[]: from skimage.morphology import binary_closing, disk
binary_mask_sized = binary_closing(binary_mask,

disk(1))

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

touching objects

Watershed Algorithm: useful
for separating touching
objects.

What is the watershed algorithm?
The name watershed is inspired by how a drop of water falls along a surface

the drop flows to the nearest low
point, called a basin

basin
MIN

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

basin
MIN

MAX
peak

MAX
peak

MAX
peak

What is the watershed algorithm?
The name watershed is inspired by how a drop of water falls along a surface

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

MAX
peak

MAX
peak

MAX
peak

the watershed line separates
which basin the water will go to

basin
basinMIN
MIN

What is the watershed algorithm?

from scikit-image.org

Calculate how far each white pixel is from
the nearest black pixel

the resulting image is called a
distance transform

http://scikit-image.org

What is the watershed algorithm?
Let’s study this distance transform…

The largest distance values are in the
centers of the 2 objects

profile

image of inverted distances

watershed line

What is the watershed algorithm?
the watershed algorithm, in summary:

binary
mask

-distance
transform

labeled
peaks
(seeds)

inputs

labeled image with
separated objects

object 1
object 2

output

Watershed in Python

[]:

calculate the distance transform

1 from scipy.ndimage import distance_transform_edt
distance_transform =

calculate distance transform

distance_transform_edt(binary_image)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Watershed in Python
find the peak coordinates in the distance transform

[]: from skimage.feature import peak_local_max
find the peak distances in distance_transform

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

import numpy as np
peak_coords = peak_local_max(distance_transform,

min_distance=10)
footprint=np.ones((25,25)),

Watershed in Python

[]:

create a labeled image with the peaks

local_maxima_image = np.zeros_like(
create img that’s same size as binary_mask

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

binary_mask, dtype=bool)
add peak_coords to img
local_maxima_image[

tuple(local_maxima_coords.T)] = True

Watershed in Python

[]:

label the image with the peaks to create seeds

seeds = label(local_maxima_image)
label local_maxima_image

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Watershed in Python

[]:

give the watershed algorithm the distance transform, the seeds,
and the binary mask

from skimage.segmentation import watershed
perform watershed

labeled_image = watershed(
-distance_transform,
seeds,
mask = binary_mask)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

2 types of segmentation: Semantic & Instance

Instance SegmentationSemantic Segmentation
All objects treated as the same category

Categories:

Example:

Nuclei

Each object is distinguished as separate
and has a unique label

Categories:
Example:

Nucleus 1
Nucleus 2
Nucleus 3

…

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Lab:
Classic Segmentation Notebook, Steps 0-5

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Images Results

Image
Processing

Image
Analysis

Statistically relevant & reproducible measurements come from analyzing
many fluorescence images.

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

We need to analyze enough images to represent an entire
cell population

25 widefield images to analyze

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

classic segmentation with Python
processing many images

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Processing many images in Python

We use a for loop to run same processing steps
on each image!

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

for loop

[]: # loop through image paths to get each image

Processing many images in Python
Organize all images to process in 1 folder.

Use a for loop to loop through image paths.

for image_path in folder_dir.iterdir():
do classic processing steps

folder_dir = Path(“/Users/edelase/bobiac”)
from pathlib import Path

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

[]: # loop through only tif image paths

Processing many images in Python

Use a for loop to loop through only tif image paths in a folder.

for image_path in folder_dir.glob(“*.tif”):
do classic processing steps

folder_dir = Path(“/Users/edelase/bobiac”)

from pathlib import Path

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

import glob

what about saving images?

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

[]: # save an image

Use a tifffile.imwrite() to save output images.

output_dir = Path(“/Users/edelase/output”)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

import tifffile
from pathlib import Path

output_filepath = output_dir /
“output_file.tif”

tifffile.imwrite(output_filepath,
image.astype(“uint32”))

Why won’t this work in our image paths for loop?

Saving images in Python

[]: # save an image

Saving images in Python
Use f”{image_path.stem}_.tif” to automatically

generate file names for each loop

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

output_filepath = output_dir /
f”{image_path.stem}_.tif”

tifffile.imwrite(output_filepath,
image.astype(“uint32”))

for image_path in input_dir.glob(“*.tif”):

import tifffile
from pathlib import Path
import glob

output_dir = Path(“/Users/edelase/output”)
input_dir = Path(“/Users/edelase/input”)

Lab:
Classic Segmentation Notebook, Step 6

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

We made it!

classic segmentation with Python
processing many images

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

General resources
Image Analysis Forum

https://forum.image.sc/

Documentation

scikit-image.org

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Learning Resource

https://
bioimagebook.github.io/

index.html

http://scikit-image.org

Questions?

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

