
In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

pip

conda

mamba

PyPI

uv

package

library
import

module

environment

pixi micromamba

miniconda

miniforge

conda-forge

anaconda

spyder

IDE

vscode

API

jupyter

notebook

jupyter-lab

requirements.txt
pyproject.toml

yaml

json

toml

🤯

Getting Started running Python
the reality...

PEP

Virtual environments, installing packages, and running code

Talley Lambert

https://xkcd.com/353/

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

1) What Python is

2) Where it "lives" on your computer and where it finds code to run

3) What packages are, and how they bring in additional
functionality.

4) What virtual environments are, and how they help us isolate
installed packages.

We will not be covering how to actually code in python here

Goals for this Talk

Understand

Know how to

1) Use uv to manage python, virtual environments, and packages;
and use it to run code.

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

This is an opinionated introduction.

There are many different ways to do this stuff.

I'll occasionally provide my personal preference/recommendation

If you already know and like a different approach,

this doesn't invalidate that :)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

What is Python?

"Python is an interpreted, object-oriented,
high-level programming language with

dynamic semantics."

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

"Python is an interpreted, object-oriented,
high-level programming language with

dynamic semantics."

interpreted

Tl;dr:
With Python, you share and run "regular" text files.

Python does all the OS-specific magic at "runtime".

What is Python?

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

"Python is an interpreted, object-oriented,
high-level programming language with

dynamic semantics."

interpreted

#include <stdio.h>
int main() {
 // printf() displays the
 // string inside quotation
 printf("Hi Talley!");
 return 0;
}

source code

hello.c hello.app

01101101010010010101001
01011010010110101001010
10010101010100100101011
10101011101010010010010
01011101001010101001010
10101001001101011010100
10010101010010010101110
10101011110101101101101
10101010010100100101010

NOT Python

hello

01101101010010010101001
01011010010110101001010
10010101010100100101011
10101011101010010010010
01011101001010101001010
10101001001101011010100
10010101010010010101110
10101011110101101101101
10101010010100100101010

hello.exe

01101101010010010101001
01011010010110101001010
10010101010100100101011
10101011101010010010010
01011101001010101001010
10101001001101011010100
10010101010010010101110
10101011110101101101101
10101010010100100101010

Hello World!

PC

macOS

linux

binary "machine" code

PC

macOS

linux

COMPILED
LANGUAGE

Hello World!

Hello World!

What is Python?

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

INTERPRETED
LANGUAGE

"Python is an interpreted, object-oriented,
high-level programming language with

dynamic semantics."

interpreted

https://nedbatchelder.com/blog/201803/is_python_interpreted_or_compiled_yes.html

def say_hi(name):
 print(f"hi {name}!")

if __name__ == "__main__":
 import sys

 say_hi(sys.argv[0])

source code

hello.py hello.pyc

"bytecode"

Hi Talley!
compiler

python
interpreter

Python
01101101010010010101001
01011010010110101001010
10010101010100100101011
10101011101010010010010
01011101001010101001010
10101001001101011010100
10010101010010010101110
10101011110101101101101
10101010010100100101010

👍 Easy cross-platform development
👍 Rapid development

👎 Can be slower to execute than compiled languages
(but can be combined with compiled code if necessary)

What is Python?

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

"Python is an interpreted, object-oriented,
high-level programming language with

dynamic semantics."

object-oriented

class Dog:
 def __init__(self, name):
 self.name = name

 def speak(self):
 print("woof!")

fido = Dog("fido")

classes

attributes

methods

instances
("objects")

What is Python?

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

"Python is an interpreted, object-oriented,
high-level programming language with

dynamic semantics."
high-level

👍 Memory management (you don't have to literally
allocate and deallocate memory)

👍 Dynamic typing
👍 Built-in data structures (list, dict, set, tuple, etc...)

"high-level" ≅
• easy to understand
• closer to human linguistics
• farther from machine code

https://docs.python.org/3/tutorial/datastructures.html

What is Python?

https://docs.python.org/3/tutorial/datastructures.html

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

"Python is an interpreted, object-oriented,
high-level programming language with

dynamic semantics."dynamic

make x a string
no type declaration required!
x = 'hi'

change it to an integer
no problem!
x = 2

Note: if you want types, there are options as well:
https://docs.python.org/3/library/typing.html

What is Python?

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Strengths

✓ Easy to learn, read, and write

✓ "Batteries included" (standard library has lots of functionality)

✓ Huge community of packages, particularly in data science

✓ Rapid development (fast edit-test-debug cycle)

✓ Totally free & open-source!

✓ "Glue-language" (easy to integrate lower level languages)

why do scientists use it?

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Weaknesses

Faster to develop, but can be slower to execute
compared to compiled languages
(But... see C-extensions, cython.org, & numba.org, etc...)

Decreased memory efficiency

Parallelism & concurrency requires some workarounds
(But: many solutions exist... see dask.org)

http://cython.org
http://numba.org
http://dask.org

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

So hot right now...

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

python interpreter

package manager

environment manager

python interpreter

module

package

package manager

virtual environment

environment manager

python interpreter The program that actually "runs" (i.e. parses, compiles, interprets)
python code. (ex: "CPython 3.8")

module An organizational unit of python code. Usually a single file
ending in .py that contains python definitions and expressions,

package
A collection of modules. Usually, this is a folder of python
modules that also contains an __init__.py file. "Package" also
frequently refers to an installable python library/application
(e.g. numpy, matplotlib, pandas...)

package manager A program that automates the installation, updating and
removal of packages (e.g. pip, conda)

virtual environment
An isolated collection of packages, settings, and an associated
python interpreter, that allows multiple different collections to
exist on the same system

environment manager A program that automates the creation and deletion of virtual
environments (e.g. conda, virtualenv, venv)

python interpreter

module

package

package manager

virtual environment

environment manager

Terms

python interpreter The program that actually "runs" (i.e. parses, compiles, interprets)
python code. (ex: "CPython 3.8")

module An organizational unit of python code. Usually a single file
ending in .py that contains python definitions and expressions,

see also: https://docs.python.org/3/glossary.html

package
A collection of modules. Usually, this is a folder of python
modules that also contains an __init__.py file. "Package" also
frequently refers to an installable python library/application
(e.g. numpy, matplotlib, pandas...)

package manager A program that automates the installation, updating and
removal of packages (e.g. pip, conda)

virtual environment
An isolated collection of packages, settings, and an associated
python interpreter, that allows multiple different collections to
exist on the same system

environment manager A program that automates the creation and deletion of virtual
environments (e.g. conda, virtualenv, venv)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

package manager

python interpreter

environment manager

PYTHON
INTERPRETER

MANAGER

ENVIRONMENT
MANAGER

PACKAGE
MANAGER

The three 
important types of tools 
you will need:

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

ENVIRONMENT
MANAGER

PACKAGE
MANAGER

PYTHON
INTERPRETER

MANAGER

1.
I install and manage

versions of Python itself

The three 
important types of tools 
you will need:

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

PYTHON
INTERPRETER

MANAGER

ENVIRONMENT
MANAGER

PACKAGE
MANAGER

2.
I create and manage
virtual environments

The three 
important types of tools 
you will need:

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

PYTHON
INTERPRETER

MANAGER

ENVIRONMENT
MANAGER

PACKAGE
MANAGER

3.
I install and manage

Python packages

The three 
important types of tools 
you will need:

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

What does it mean to run code in python?

~/Desktop/hi.py

print("hello world!")

$ python ~/Desktop/hi.py

Python 3.8.5 | packaged by conda-forge
[Clang 10.0.1] on darwin

Executing a script/program/file Using an interactive console or notebook

hello world!

$ python

>>> print("hello world!")

hello world!

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Python is modular

~/Desktop/do_math.py  

from numpy add

print(add(1, 2))

One Python module (file) can import functionality from another module (file)

$ python ~/Desktop/do_math.py

3

import

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

$ python

What is the Python interpreter?

The Python interpreter is a program that parses and compiles source code
(human readable code) into "bytecode" (a lower level representation)
that is then "interpreted" (executed) by the python "virtual machine"

print("hello world!")

Source Code Python interpreter Magic.

hello world!

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

$ python

$ which python
python not found

$ python --version
Python 2.7.16

Python 3 has been out since 2008
Python 2 is end-of-life as of Jan. 2020

For this and many other reasons... don't use your system python (if you have one)!

Where does it live?

😲

(It can live almost anywhere)

python is /usr/bin/python # mac ≤ Catalina 10.15

What is the Python interpreter?

The Python interpreter is a program that parses and compiles source code
(human readable code) into "bytecode" (a lower level representation)
that is then "interpreted" (executed) by the python "virtual machine"

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

python.org

homebrew / choco

anaconda / miniconda

pyenv

uv

Tl;dr: install uv
https://docs.astral.sh/uv/getting-started/installation/

😖

OK, then how should I get Python?

http://python.org
https://docs.astral.sh/uv/getting-started/installation/

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

ENVIRONMENT
MANAGER

PACKAGE
MANAGER

PYTHON
INTERPRETER

MANAGER

uvconda/
mamba

pyenv

brew winget

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Instructions at https://docs.astral.sh/uv/getting-started/installation/

Installing uv

curl -LsSf https://astral.sh/uv/install.sh | sh

powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"

macOS, linux

Windows

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Installing uv

Instructions at https://docs.astral.sh/uv/getting-started/installation/

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Running Python with uv

uv run [COMMAND]

Ensures that the command or script is run in a Python "environment"
(more on that in a moment).

Will download Python for you if needed.

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

What is a python virtual environment?

 /Users/talley/
 ├──
 └── some_folder/
 ├── envA/
 │ ├── lib/
 │ │ └── python3.13
 │ ├── bin/
 │ └──
 ├── envB/
 │ ├── lib/
 │ │ └── python3.9
 │ ├── bin
 │ └──
 └──

for more: https://realpython.com/python-virtual-environments-a-primer

An isolated collection of packages, settings, and a python interpreter,
... that allows multiple different collections to exist on the same system

...and why do I need one?

You don't need
to know this

You will rarely,

if ever,
interact directly

with an environment folder

... (It's usually a literal folder somewhere on your computer...)

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Why would I need more than 1 environment?

package A

Problem 1: conflicting package dependencies

package B

numpy v1 numpy v2

❌

Tip! you can only have one version of any given package installed in an environment

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

package A

numpy v1

env A

package B

numpy v2

env B

Solution:

Create multiple "virtual" environments
each one contains all of the dependencies and requirements for a particular application

Why would I need more than 1 environment?

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Why would I need more than 1 environment?

Problem 2: "It worked fine on my computer!" 🤔

Using environments also keeps your "globally" installed
packages to a minimum, and makes your project

dependencies much clearer

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Why would I need more than 1 environment?

Try to avoid having one big "base" environment
where you install everything!

Think of environments as disposable!

Don't get "attached" to an environment...
Learn to recreate them quickly

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

How do I create a virtual environment?

You need... an environment manager

Examples:

• venv
• virtualenv
• conda/mamba
• pipenv
• poetry
• uv

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

PYTHON
INTERPRETER

MANAGER

ENVIRONMENT
MANAGER

PACKAGE
MANAGER

uv

conda/mamba

virtualenv

venv

hatch

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

How do I create a virtual environment?

uv venv [ENV_NAME] (defaults to ".venv")

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

How do I create a virtual environment?

uv venv [ENV_NAME] (defaults to ".venv")

uv venv -p 3.10

TIP: Specify Python version with --python/-p

uv venv -p 3.13

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

You need to "activate" it first...

source .venv/bin/activate

.venv\Scripts\activate

macOS/linux

Windows

This sets up your terminal environment to know where to find things...

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Now that we've got an environment set up...

let's install some packages!

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

"Packages" bring in additional functionality

Packages may sometimes be referred to as "libraries"

super awesome

"scientific
python eco

system"

Just think of each of these
as a folder of .py files

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

You need... a package manager

How do I get Python packages?

Examples:

• pip
• conda/mamba
• uv pip

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

PYTHON
INTERPRETER

MANAGER

ENVIRONMENT
MANAGER

PACKAGE
MANAGER

uv

conda/mamba

pip

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

uv pip install <package>

How do I get Python packages?

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

uv pip list

Tip: show installed packages with

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

From where??

Where did it install?? How does Python find code?

import os
import sys

import matplotlib
import numpy as np

import my_module

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

sys.path

>>> import sys

>>> print(sys.path)
on mac/linux

How does Python find code?

[
 '.../.venv/lib/python3.X',
 '.../.venv/lib/python3.X/lib-dynload',
 '',
 '.../.venv/lib/python3.X/site-packages',
]

sys
is a module

in the "standard library"

path
is a variable

in the sys module

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

>>> import sys

>>> print(sys.path)
on Windows:
[
 '...\.venv\Lib',
 '...\.venv\DLLs',
 '',
 '...\.venv\Lib\site-packages',
]

sys.path

For more:

https://docs.python.org/3/library/sys.html#sys.path

https://leemendelowitz.github.io/blog/how-does-python-find-packages.html

How does Python find code?

>>> import sys

>>> print(sys.path)
on mac/linux
[
 '.../.venv/lib/python3.X',
 '.../.venv/lib/python3.X/lib-dynload',
 '',
 '.../.venv/lib/python3.X/site-packages',
]

https://docs.python.org/3/library/sys.html#sys.path
https://leemendelowitz.github.io/blog/how-does-python-find-packages.html

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

"standard library" modules
import os
import sys

mac/linux:
<env>/lib/pythonX.Y
windows:
<env>\Lib

installed third-party packages
import matplotlib
import numpy as np

mac/linux:
<env>/lib/pythonX.Y/site-packages
windows:
<env>\Lib\site-packages

your own local stuff...
import my_module

"" # meaning "current directory"

tip; find the file:
import numpy
print(numpy.__file__)

How does Python find code?

[
 '.../.venv/lib/python3.X',
 '.../.venv/lib/python3.X/lib-dynload',
 '',
 '.../.venv/lib/python3.X/site-packages',
]

sys.path

+ anything else you add to
sys.path!

That's where pip installs!

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

What Python is

Where it "lives" on your computer and where it finds code to run

What virtual environments are, and how they help us isolate
installed packages.

What packages are, and how they bring in additional
functionality.

Now you know...

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

PYTHON
INTERPRETER

MANAGER

ENVIRONMENT
MANAGER

PACKAGE
MANAGER

uv

conda/mamba

pip

virtualenv

venv

hatch

poetry pipenv

pyenv

brew winget

pipx

pdm

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Conda is an open-source, cross-platform, language-agnostic
package management system

and environment management system

https://github.com/conda/conda

There are many "flavors" ... I recommend using micromamba:

https://mamba.readthedocs.io/en/latest/installation/micromamba-installation.html

conda

For our purposes ... the most important difference between
uv and conda will be where they download packages from

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

uv pip vs. conda

see also: https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/

https://pypi.org https://anaconda.org/

pip/uv pip
installs Python packages

from PyPI
into any environment

conda
installs any kind of package

from Anaconda
into a conda environment

http://pypi.org
https://anaconda.org/

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

There may be cases where you must install a package via conda,
e.g. for certain performance GPU computing tasks

... otherwise, stick with uv venv and uv pip

uv pip vs. conda

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

(Re)creating environments with dependency files

environment.yml

name: myenv
channels:
 - conda-forge
 - defaults
dependencies:
 - python=3.7
 - pip
 - numpy>=1.14.1
 - scipy
 - pip:
 - tifffile

Create env and install
conda env create -f environment.yml

conda

https://docs.conda.io/projects/conda/en/latest/user-guide/
tasks/manage-environments.html

requirements.txt

numpy>=1.14.1
scipy>=1.0.1
matplotlib>=2.0.0,!=3.0.0
networkx>=2.0
pillow>=4.3.0
imageio>=2.3.0

Create env and install
uv venv
uv pip install -r requirements.txt

pip / uv-pip

https://pip.pypa.io/en/stable/user_guide/#requirements-files

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Listing dependencies within a script

/// script
requires-python = ">=3.13"
dependencies = [
"numpy",
]
///  

from numpy import add

print(add(1, 2))

This is a great (newer) convention in the Python world.

It is supported by uv.

my_file.py

uv run my_file.py

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

One more cool trick...

uvx [COMMAND]

• Creates a Python environment

• Installs package with the same name as [COMMAND]

• Runs that [COMMAND]

• If the package and command don't have the same name:

Run a command provided by any Python package

uvx --from [PACKAGE] [COMMAND]

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

<press tab>

https://ipython.readthedocs.io

• Souped up interactive console (use ipython instead of python)

• Tab autocompletion

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

• Souped up interactive console (use ipython instead of python)

• Tab autocompletion

• Easy help/documentation (? and ??)

https://ipython.readthedocs.io

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

• Souped up interactive console (use ipython instead of python)

• Tab autocompletion

• Easy help/documentation (? and ??)

• "magics" (e.g. %run, %debug, ...)
https://ipython.readthedocs.io/en/stable/interactive/magics.html

... then resume interactive usage with all of the variables from
some_script.py available

https://ipython.readthedocs.io

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

• Souped up interactive console (use ipython instead of python)

• Tab autocompletion

• Easy help/documentation (? and ??)

• "magics" (e.g. %run, %debug, ...)
https://ipython.readthedocs.io/en/stable/interactive/magics.html

• Command history (press up/down to navigate previous commands)

https://ipython.readthedocs.io

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

https://jupyter.org/ https://jupyterlab.readthedocs.io/

JupyterLab

Jupyter Notebooks offer inline figures
and integrated (markdown) documentation.
... right next to your interactive code.

It's a nice format for exploration, communication
& teaching.

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Running notebooks with uv via juv

uvx juv run notebook.ipynb

• Ensures a Python environment with Jupyter installed

• Starts a Jupyter server

• Installs any dependencies listed inline at the top of the notebook

https://github.com/manzt/juv

uvx juv init notebook.ipynb

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Jupyter (notebook/lab) is great
particularly for sharing code with figures & teaching ...

but
being comfortable using Python/IPython without a notebook

is critical

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

PyCharm
https://www.jetbrains.com/pycharm/

VS Code
https://code.visualstudio.com/

Spyder
https://github.com/spyder-ide/spyder

Integrated Development
Environments ("IDE")

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

• Get Python by installing uv: https://docs.astral.sh/uv/getting-started/installation/

• Create new environments (often) with: uv venv

• Consider environments "disposable" ... don't get attached :)
Use requirements.txt (for pip) or environment.yml (for conda) files to rebuild them easily

• Use uv pip install to install packages.
(For some difficult binary packages, you'll need conda)

• If you're experiencing mysterious errors... make a new environment!

• uv run <command> to quickly execute a script/command in an environment

• uvx <command> to run a command from any package in an isolated env.

• Use Jupyter for a browser based IDE/notebook/console with rich media,
widgets, markdown, etc... But know how to use Python without it!

Summary

https://docs.astral.sh/uv/getting-started/installation/

In [1]: from microscopy import analysis

In [2]: img = analysis.imread(”bobiac.tif”)

In [4]:

In [3]: analysis.imshow(img)

Any questions?

lingering confusions?

