GLOBAL BIOIMAGING IMAGE DATA 2025 COURSE

Introduction to bioimage analysis

Antoine Ruzette Computational Biologist at Harvard Medical School

One-stop shop for the materials in this course

https://hms-iac.github.io/GBI-india/

I.A.C. (Image Analysis Collaboratory) @ HMS since Sep '22

- **Teaching:** at HMS and internationally
- IT: access to relevant solutions, open- and closed-source
- **R&D:** centered on methods and tools
- Locations: LHRRB 105 & Armenise 531D
- **Consults**: Contact Simon
 - simon@hms.harvard.edu

• Support and collaboration: for image and data analysis projects

https://iac.hms.harvard.edu/

Who we are, currently

Antoine A. Ruzette

Associate

Ranit Karmakar

Specialist Postdoc

Federico Gasparoli

Research Associate

Backgrounds in

Physics Biology Microscopy Bioengineering **Computer Engineering**

Maria Theiss

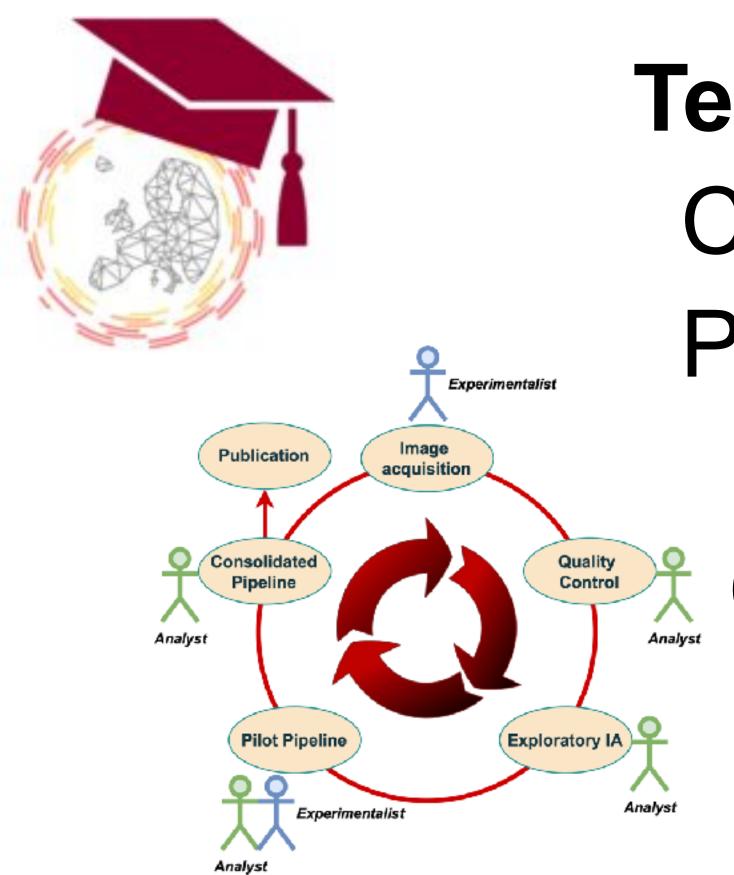
Specialist Postdoc

Simon F. Nørrelykke

Director, Lecturer

4

How we operate



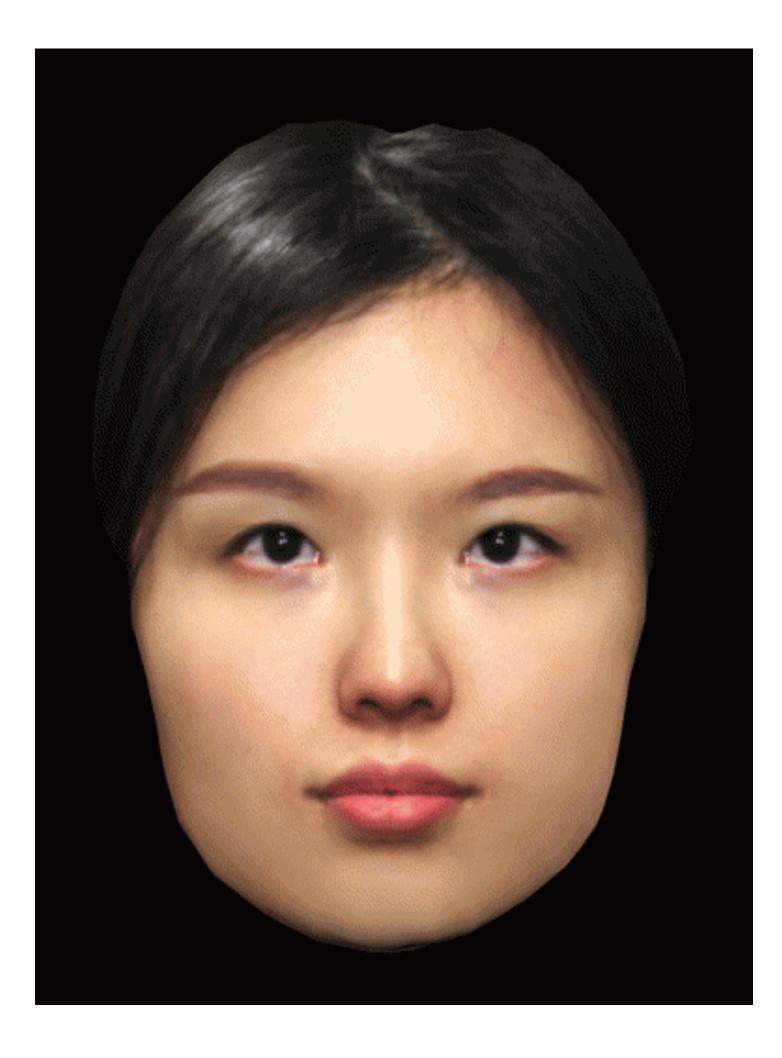
Consultations "Image Clinics"

Teaching and Training Courses in image analysis Postdoc training program

Collaborations

5

Problem: Seeing is Believing



https://en.wikipedia.org/wiki/Hollow-Face_illusion

Mask rotates continuously in the same direction (nose passing right to left on screen)

Can you see the inside of the mask?

Acknowledgements

- Szymon Stoma, ETH Zurich, Switzerland
 - slides and workflows
- Peter Bankhead, Edinburgh University, Scotland
 - slides and graphics
- CITE, Harvard Medical School
 - slides and graphics

Reasons to learn about image processing

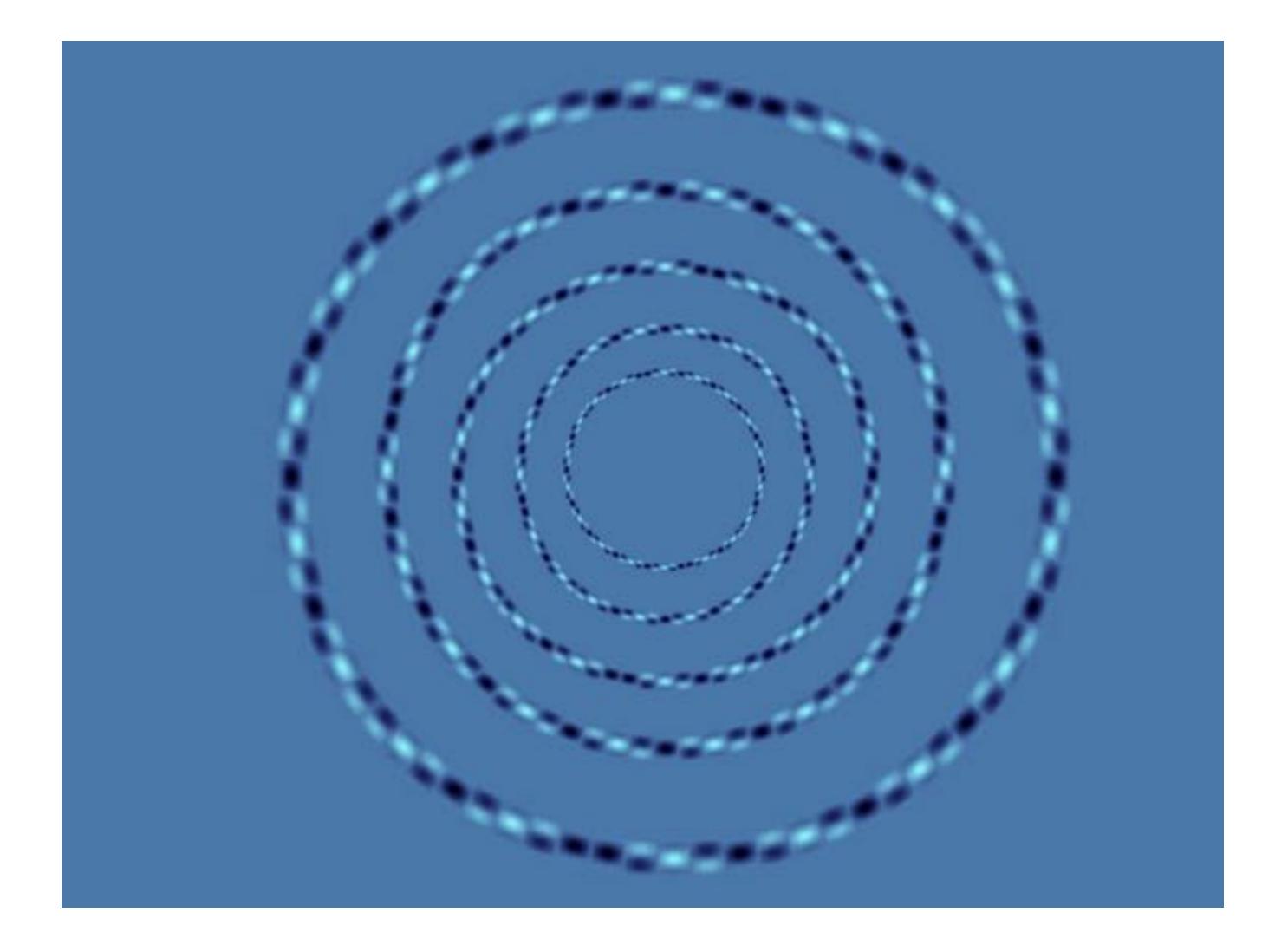
- Make pretty pictures (processing) publications, talks, websites, ...
- cell sizes, vessel lengths, GPF expression level, ...
- Get numbers out of pictures (analysis) Make experiment possible (automation)
 - whole-genome screen: millions of images
- Objectivity and Reproducibility
 - in science, just do it!

Reasons not to learn about image processing

none

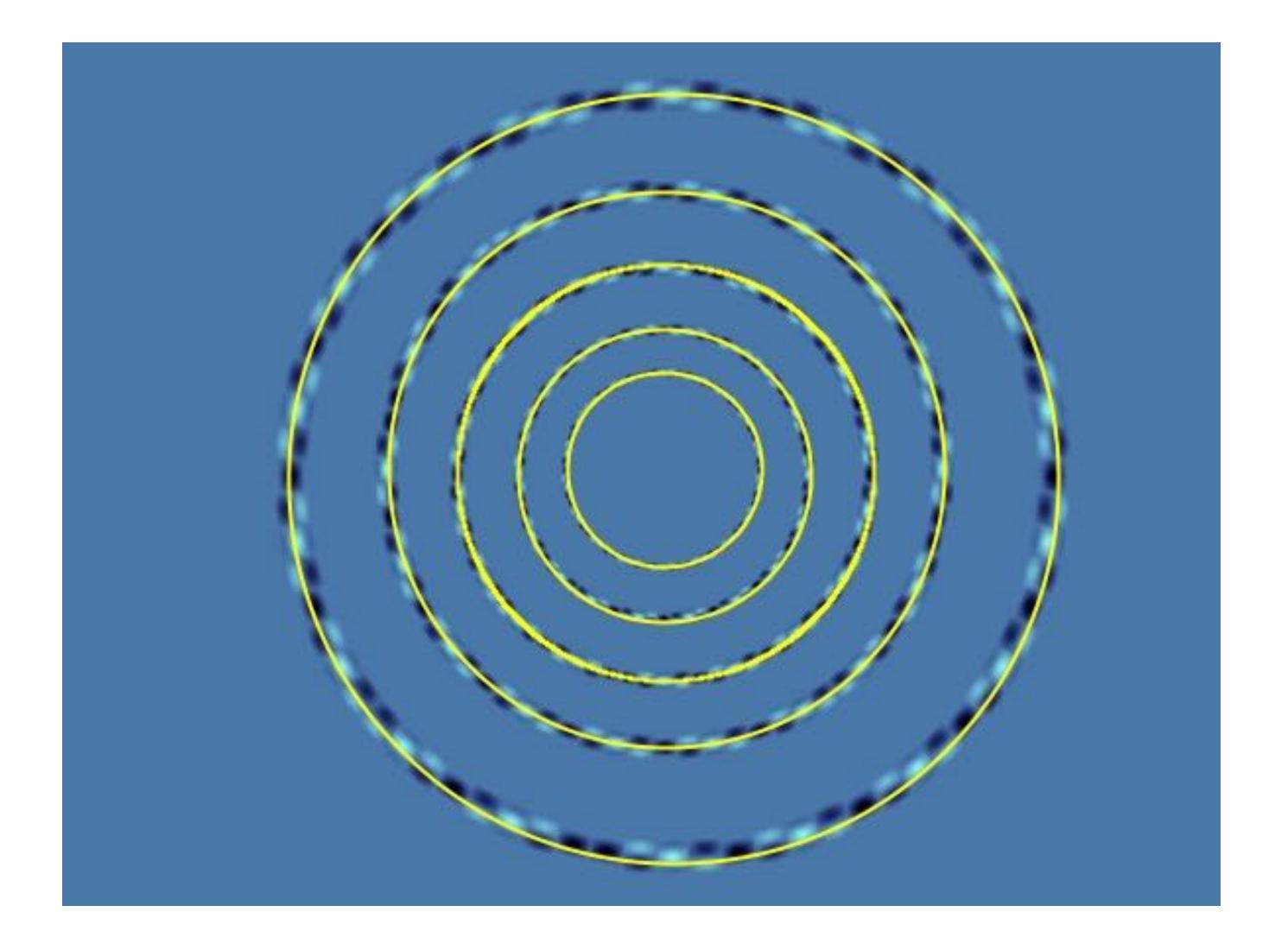
Optical Illusions Why you should use a computer to analyze images

Concentric circles !?



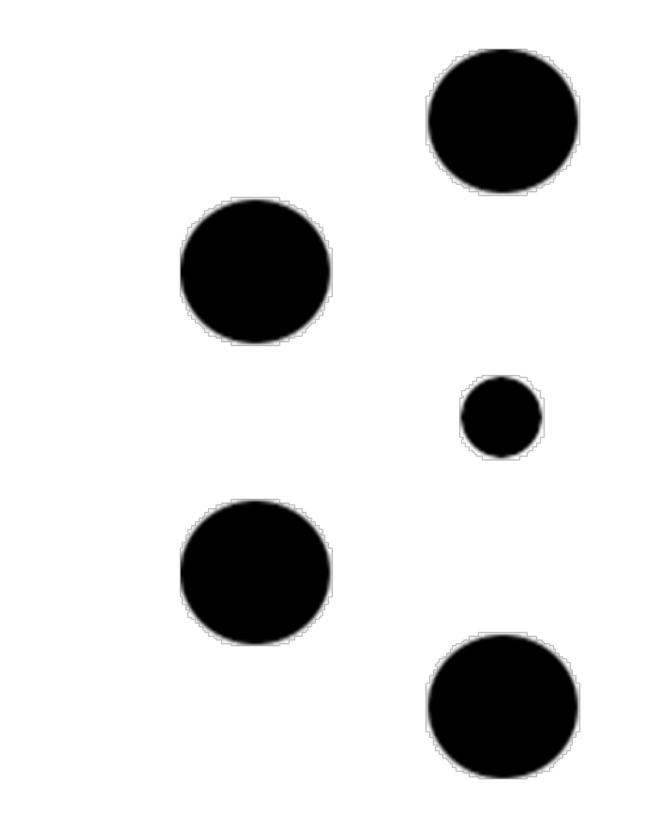
https://www.moillusions.com/perfect-circles-optical-illusion/

Concentric circles !?

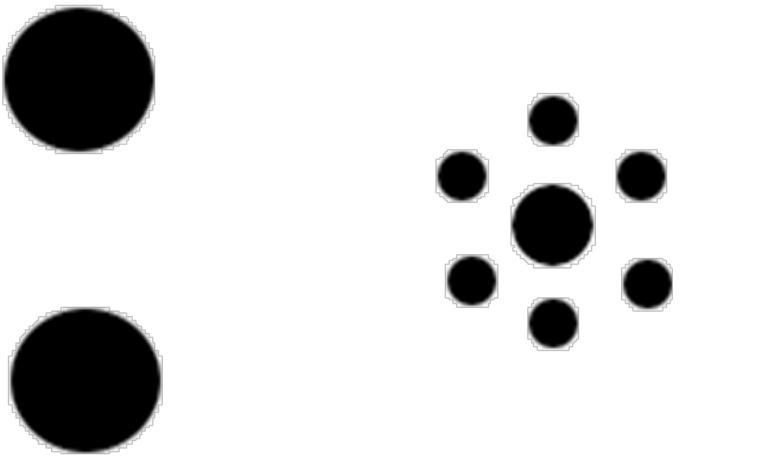


https://www.moillusions.com/perfect-circles-optical-illusion/

Identical central discs?



Our size estimate is strongly influenced by the local neighbourhood

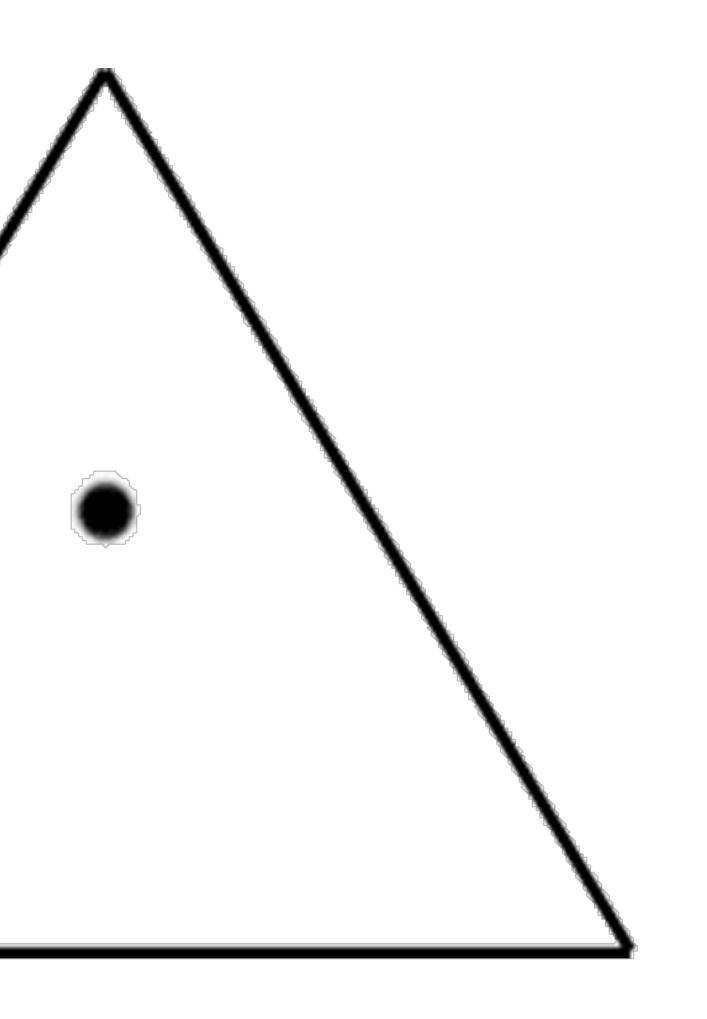


Identical central discs?

Yes, the discs are identical

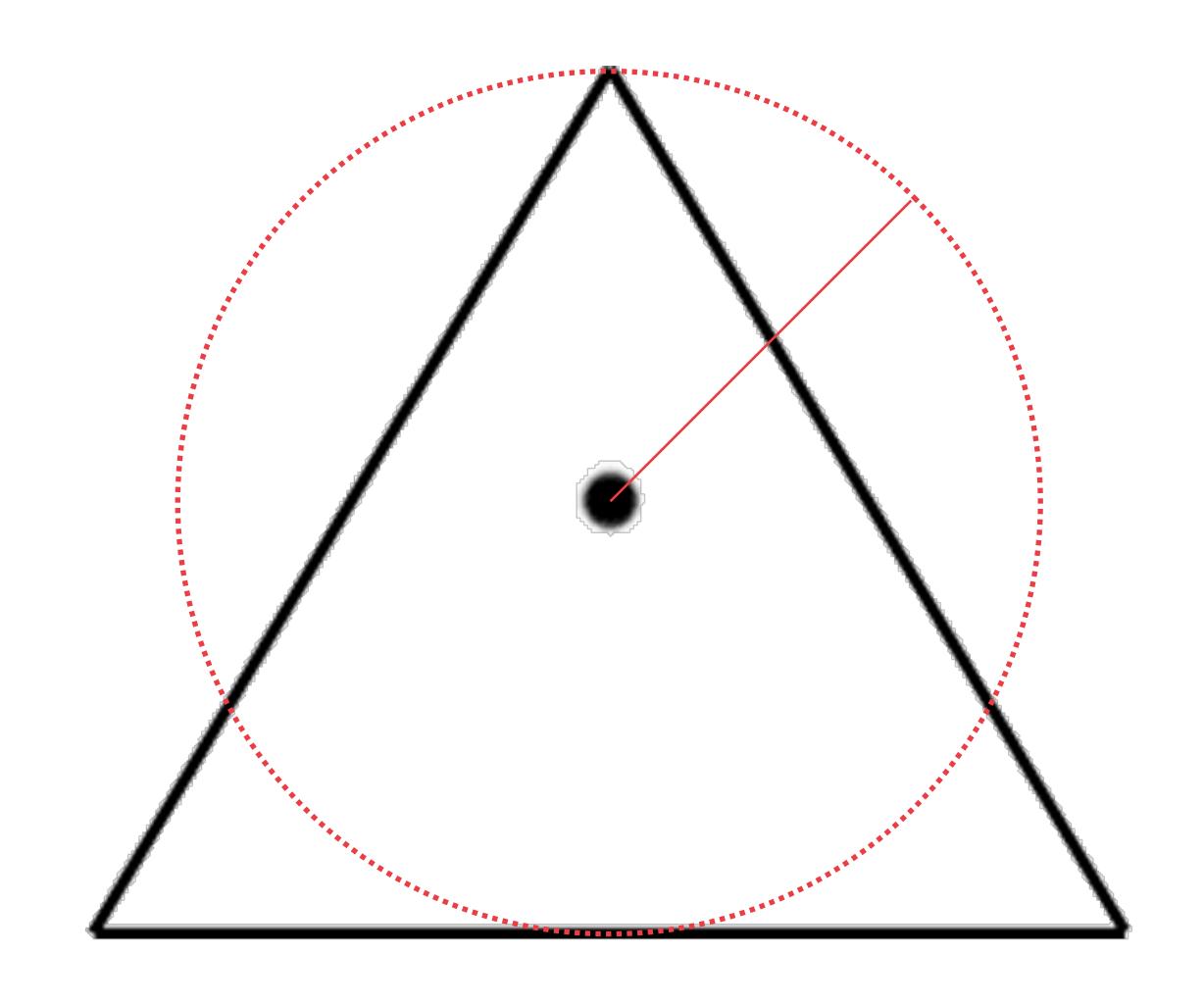
Is the dot half-way up?

http://www.brainbashers.com



Our sense of distance depends on neighbourhood

Is the dot half-way up?



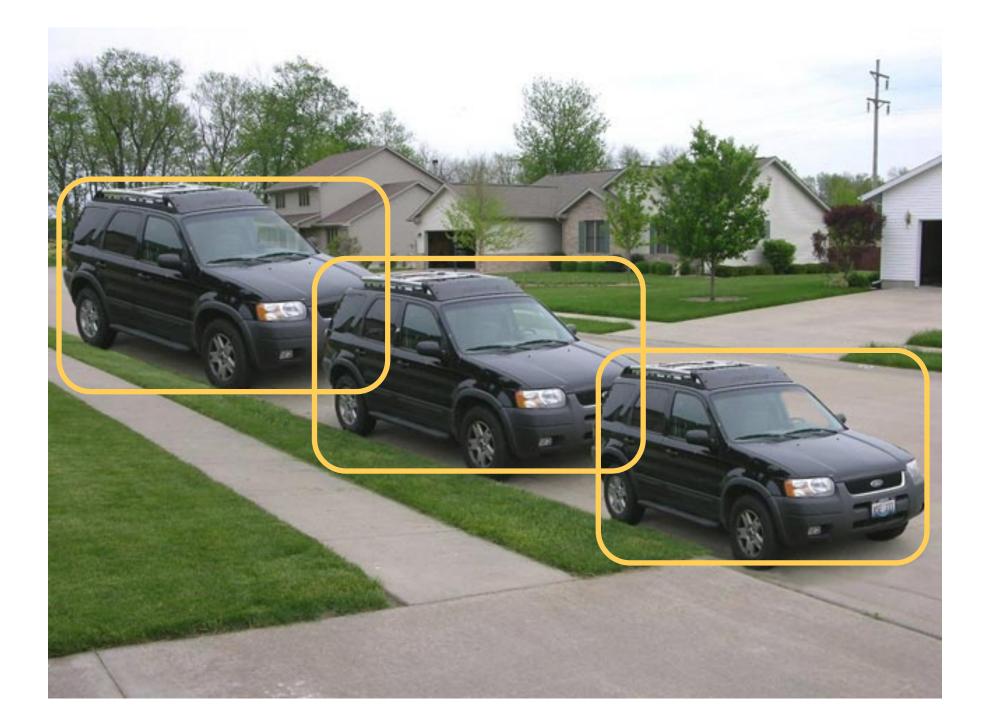
http://www.brainbashers.com

Yes it is!

Which car is bigger?

Which car is bigger?

Which car is bigger?



All cars are same size (Erroneous, application of subjective/perceptual constancy algorithm by your brain)

Are discs equally grey?

http://www.brainbashers.com

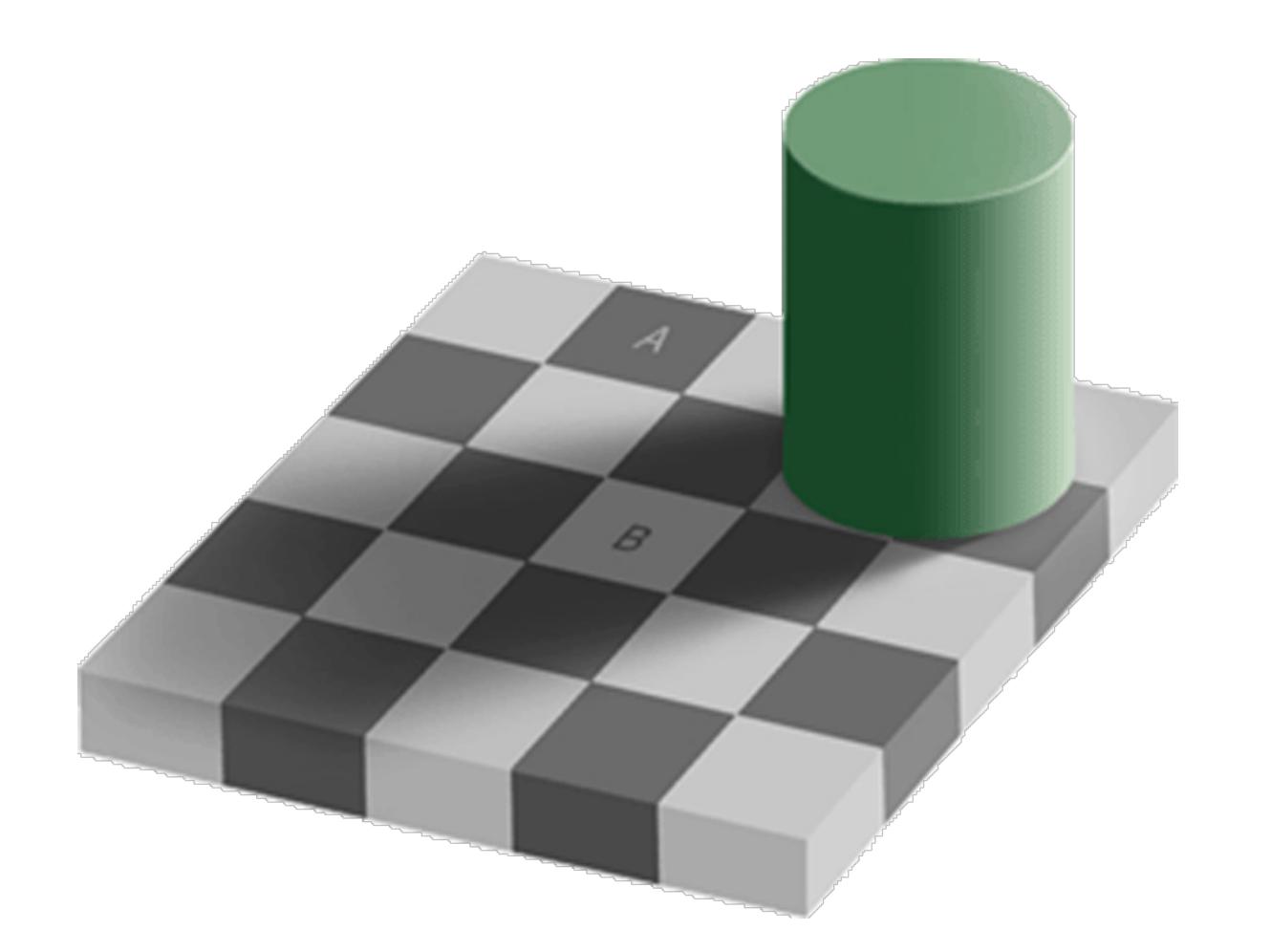
Intensity perception depends strongly on neighbourhood

Are discs equally grey?

http://www.brainbashers.com

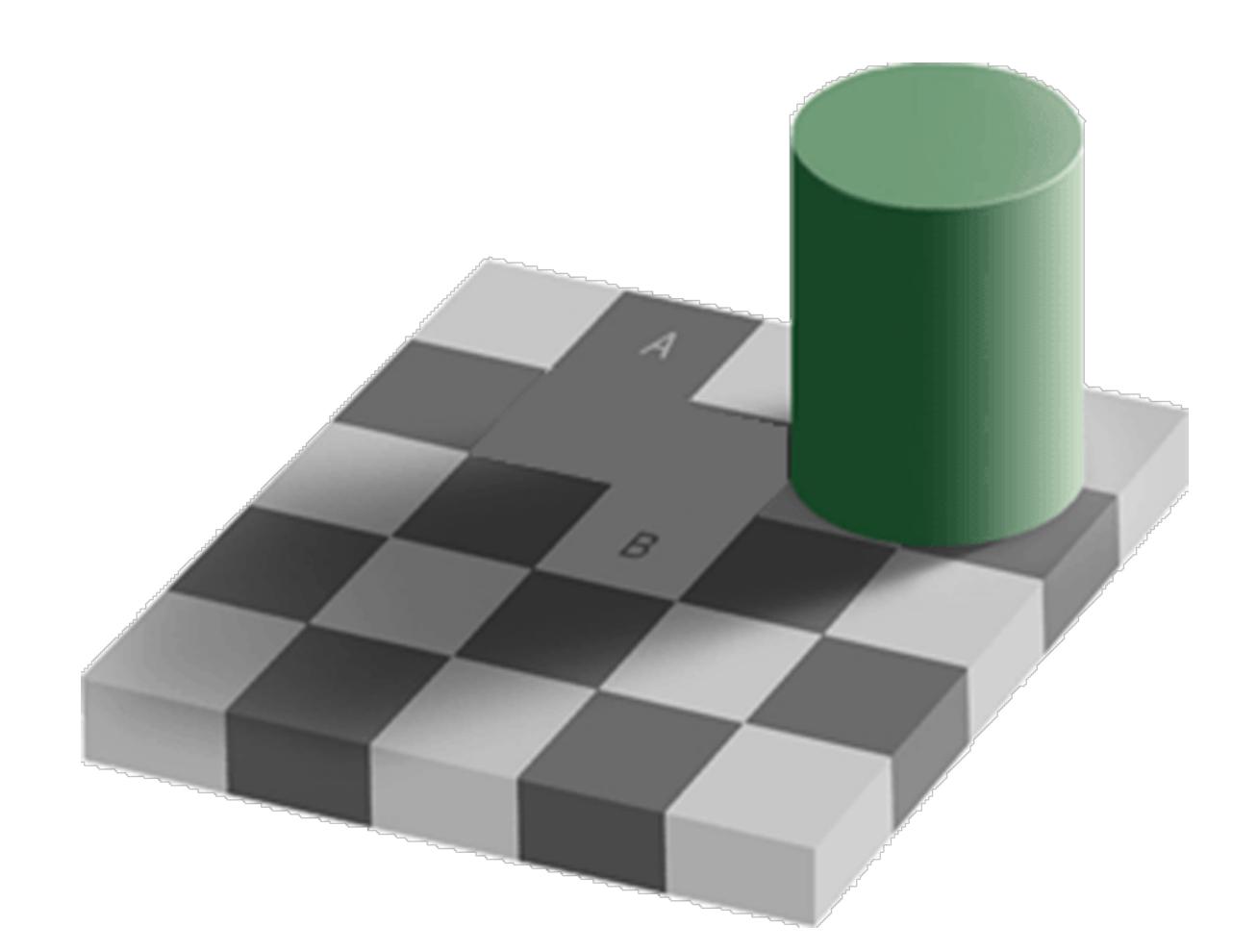
Yes they are!

Are A and B equally grey?



Intensity perception depends strongly on neighbourhood

Are A and B equally grey?

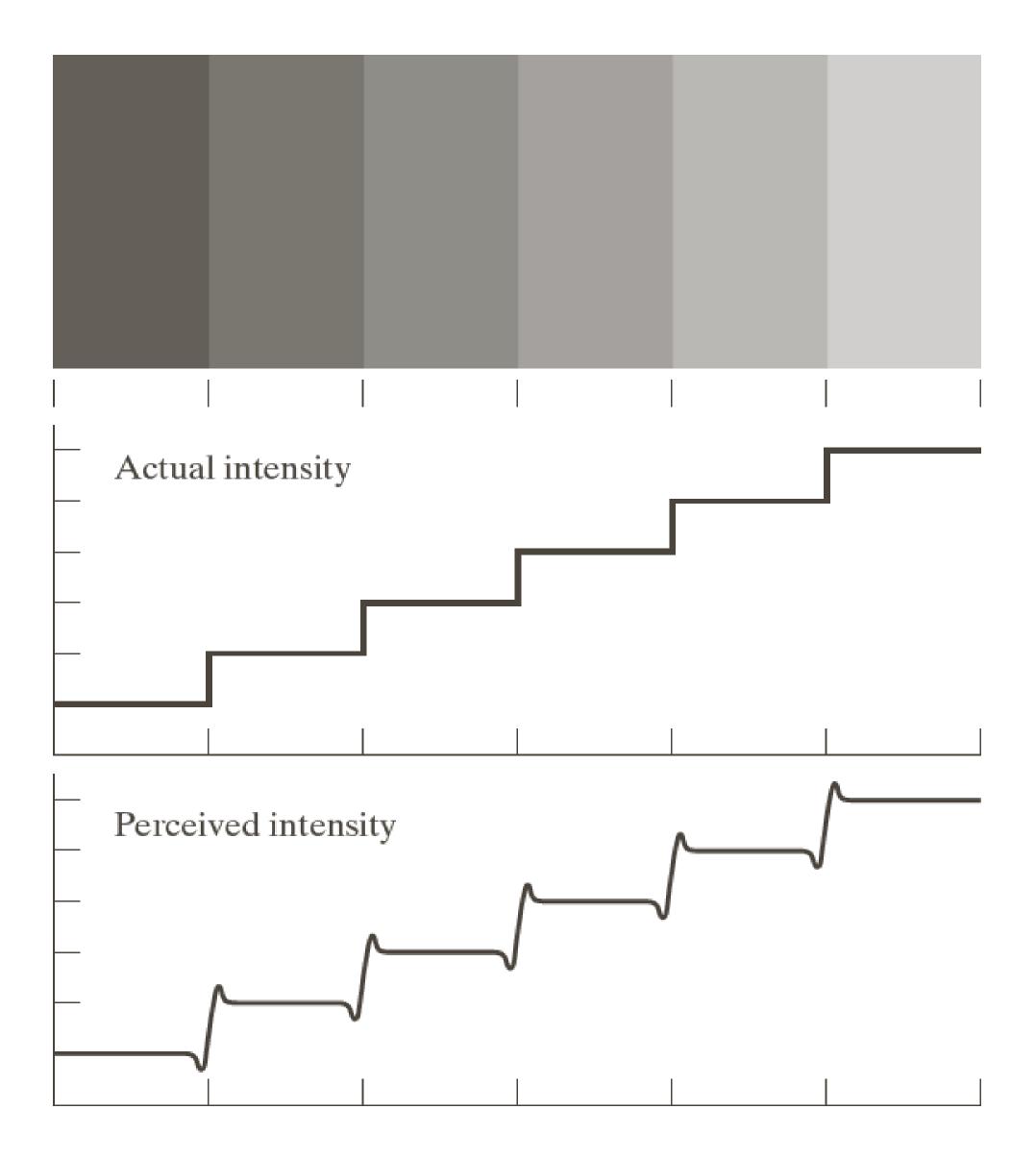


http://www.brainbashers.com

Yes they are!

Intensity Perception

The Mach band effect: the perceived intensity is not a simple function of actual intensity



Spot the Dog (a neural network)

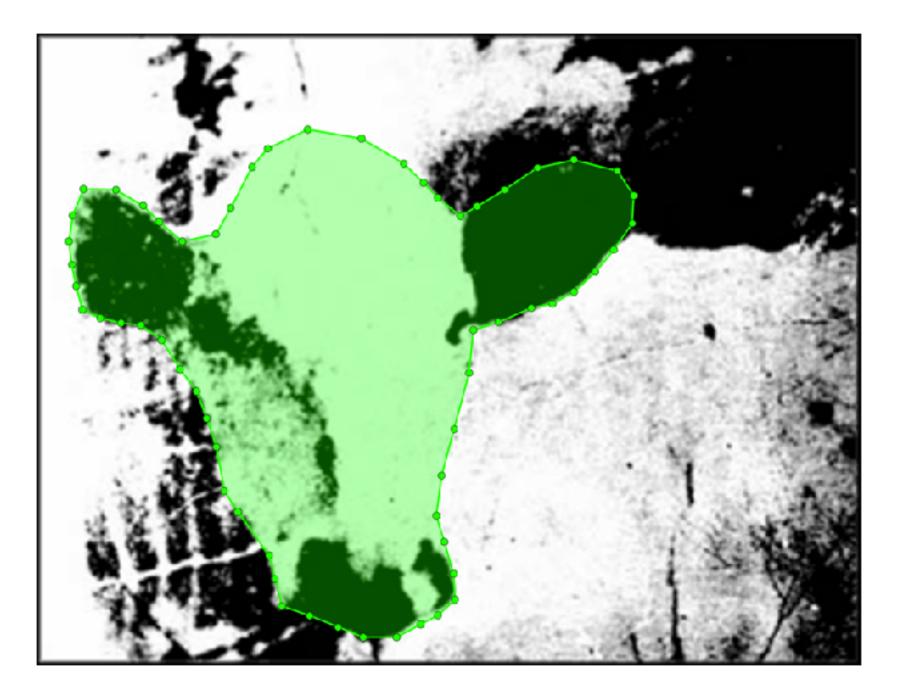
Why you should use your Brain

Bayesian Pattern Recognition

http://www.brainbashers.com

Yes, that is a cow!

Bayesian Pattern Recognition



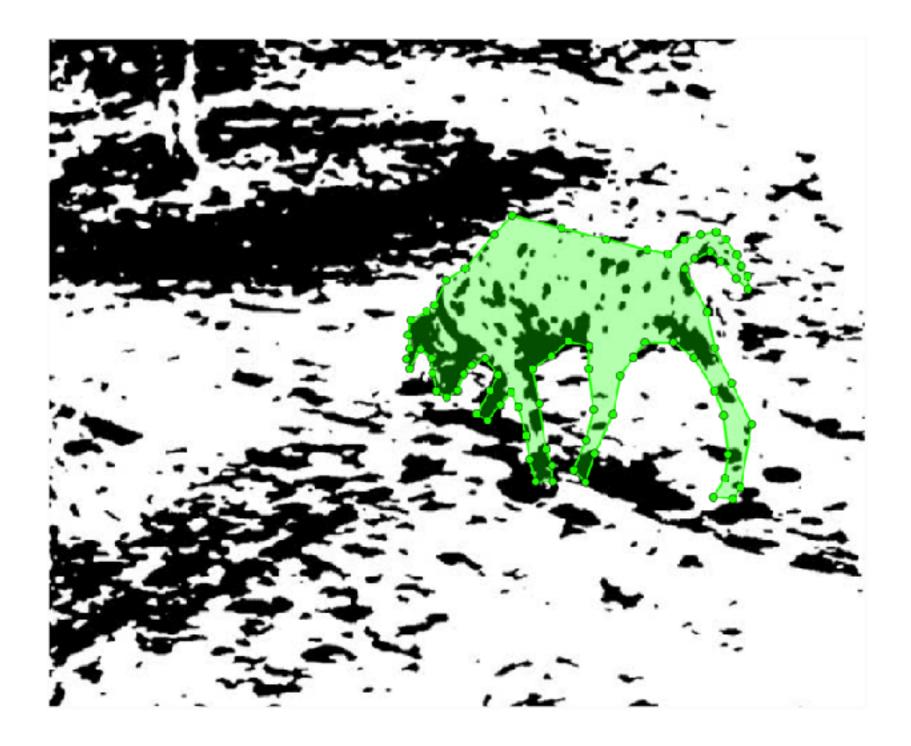
Yes, that is a cow! http://www.brainbashers.com

Using Prior Knowledge

http://www.brainbashers.com

Keyword: Dalmatian dog!

Using Prior Knowledge



http://www.brainbashers.com

Keyword: Dalmatian dog!

A brief history of image analysis

Bioimage analysis 37 years ago (1987)

- <u>**NIH Image</u>** is the only game in town (below \$150,000)</u>
 - Written in Pascal for the Macintosh (Mac II) by Wayne S. Rasband \bigcirc
 - First released in 1987, shared on floppy disks \bigcirc
 - Supporting 8-bit 256 gray "colors" \bigcirc
 - If you wanted it, buy a Macintosh, or \bigcirc
- - Scion built frame-grabbers and wanted to expand to Windows \bigcirc
- Self-driving off-road in day and night time conditions demonstrated
- 1988: Yann LeCun publishes convolutional neural network paper
 - This is a technology, not a tool, few people notice, paper is fun to read today \bigcirc
 - Middle of second <u>Al winter</u> (1987-1993) \bigcirc

Windows supported through buggy closed-source C port Scion Image

Bioimage analysis 27 years ago (1997)

- **ImageJ** (J for Java)---still the main game in town
 - Released in 1997 as rewrite of *NIH Image* \bigcirc
 - Apple in decline, the PC on the rise \bigcirc
 - \bigcirc programming platform
 - Rasband wanted to support Windows, but not two sets of code Ο
 - Ο everywhere."

https://www.nature.com/articles/nmeth.2089

1995: Sun Microsystems created the Java programming language as an operating system-agnostic

"Instead of 'write once, run everywhere', Rasband found himself writing once and debugging

First autonomous coast-to-coast drive of the United States two years earlier

Bioimage analysis 12 years ago (2012)

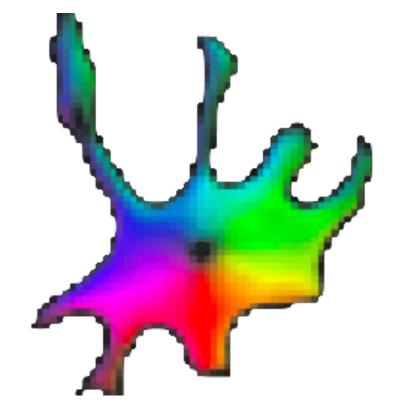
<u>AlexNet</u> is published (2012)

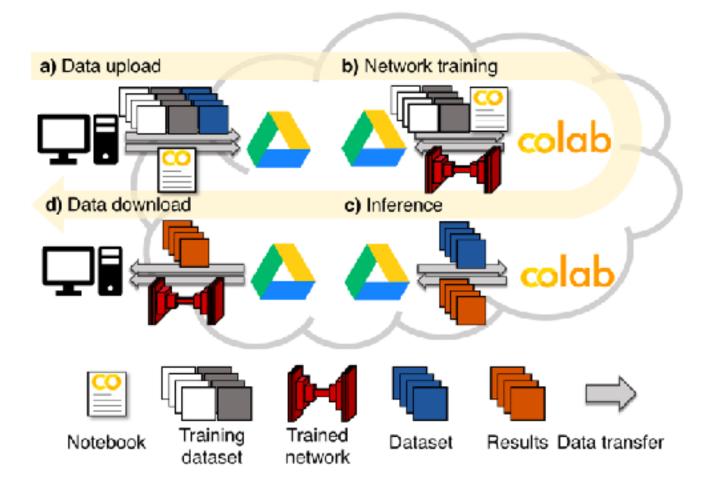
- Wins the ImageNet Large Scale Visual Recognition Challenge \bigcirc
- Error of 15.3%, more than 10.8 percentage points better than #2 \bigcirc
- Possible due to GPUs \bigcirc
- <u>CellProfiler</u> has been around for 6 years (2006) Fiji (Fiji is just ImageJ) has been around for 5 years (2007)
- scikit-image released 3 years ago (2009)
- Bitcoin grows from \$5 to \$13 (remember Silk Road?) (2012)
- U-Net, GANs, and <u>Jupyter</u> will appear in 2-3 years (2014/15)
- <u>AlphaGo</u> will beat Lee Sodol in 4 years (2016)
- **QuPath** is still 4 years in the future (2016)

Bioimage analysis 4 years ago (2020)

CellPose is out (2020)

- "Cellpose: a generalist algorithm for cellular segmentation" \bigcirc
- Trained on highly varied images of cells, over 70,000 segmented objects \bigcirc
- Cells don't have to be star-shaped \bigcirc
- Web-platform and Jupyter notebooks \bigcirc
- https://www.nature.com/articles/s41592-020-01018-x \bigcirc
- ZeroCostDL4Mic available
 - Paper still a year in the future \bigcirc
 - Implementation of common DL technologies to microscopy imaging \bigcirc
 - Relies on GPUs and other infrastructure provided by Google Colab. \bigcirc
 - https://github.com/HenriguesLab/ZeroCostDL4Mic/wiki \bigcirc





Bioimage analysis now (2024)

- Increased integration of DL technologies into existing bioimage tools CARE, Stardist, CellPose, DeepCell (MESMER) as plugins, modules, notebooks for \bigcirc

 - Fiji, CellProfiler, <u>Napari</u>, ZeroCostDL4Mic, etc. \bigcirc
- Most major Microscopy producers offer AI
 - Implemented in-house or through acquisition \bigcirc
 - Zeiss: Arivis (bought) \bigcirc
 - Leica: Aivia (bought) \bigcirc
 - Nikon: NIS.ai suite (in-house implementation of open-source technologies)
- \bigcirc "Smart microscopy" includes DL for event detection
 - https://www.nature.com/articles/s41592-022-01589-x \bigcirc
- Fully autonomous cars still in the future
 - Image analysis is hard if you don't understand what you are looking at \bigcirc

Create a workout plan

 \Box

for resistance training

Explain why popcorn pops

to a kid who loves watching it in the microwave

Please write an ImageJ macro that uses StarDist to segment an image from fluorescence microscopy

Free Research Preview. ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT September 25 Version

https://chat.openai.com/

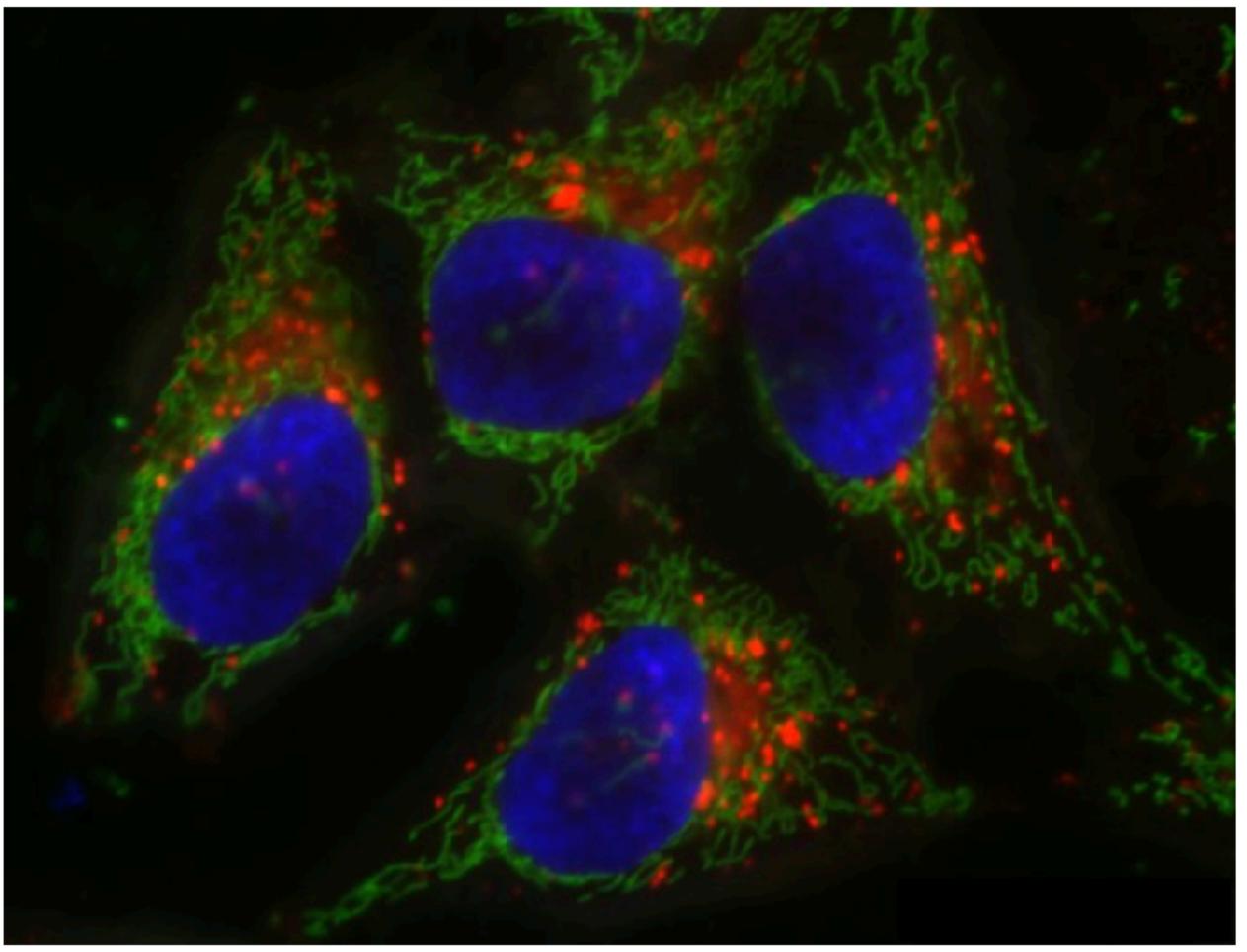
ChatGPT

Design a database schema

for an online merch store

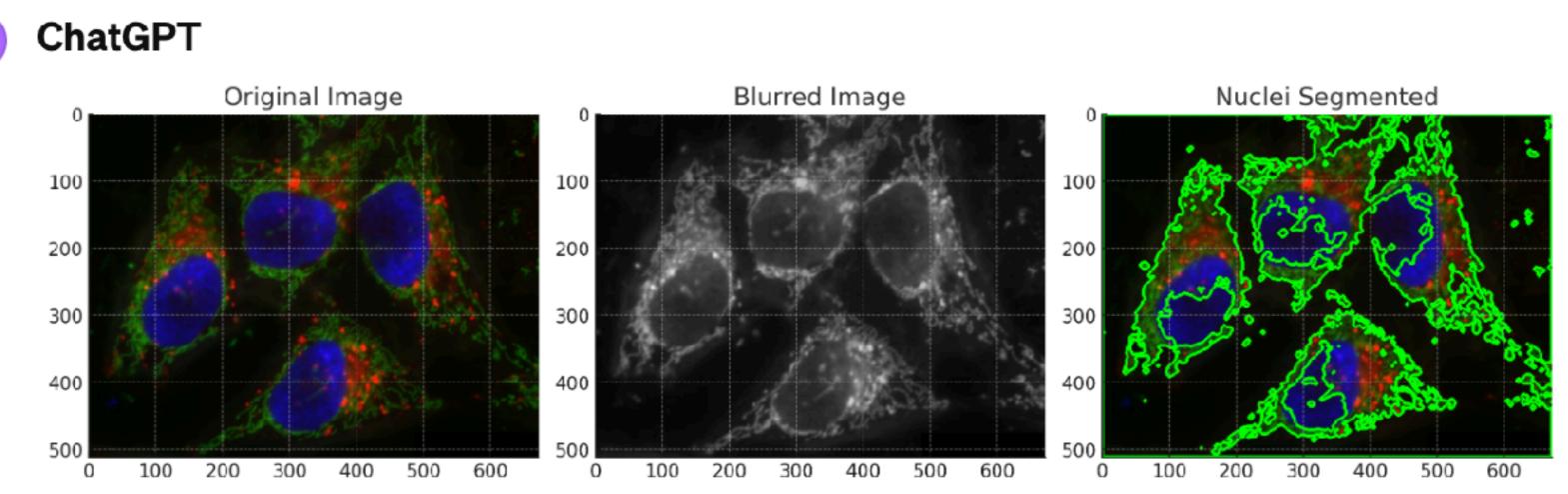
Write an email

to request a quote from local plumbers



please segment the nuclei and show me the relevant code you used

37



The nuclei in the image have been segmented using the following steps:

- The image was converted to grayscale to simplify the analysis.
- Gaussian Blur was applied to reduce noise and detail in the image, which aids in thresholding and contour detection.
- Otsu's thresholding was performed to convert the grayscale image into a binary image, which helps in distinguishing the nuclei from the background.
- Contours were found in the binary image, which correspond to the boundaries of the nuclei.
- These contours were then drawn onto the original image to visually segment the nuclei.

python

import cv2 import numpy as np from matplotlib import pyplot as plt

Load the image image_path = '/mnt/data/hela-cells.jpg' $image = cv2.imread(image_path)$

Convert the image to gray scale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Apply GaussianBlur, which is good for edge detection blurred = cv2.GaussianBlur(gray, (5, 5), 0)

Perform Otsu's thresholding _, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV + cv2.

Find contours which will give us the nuclei boundaries contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX)

Draw the contours on the original image contoured_image = image.copy() cv2.drawContours(contoured_image, contours, -1, (0, 255, 0), 3)

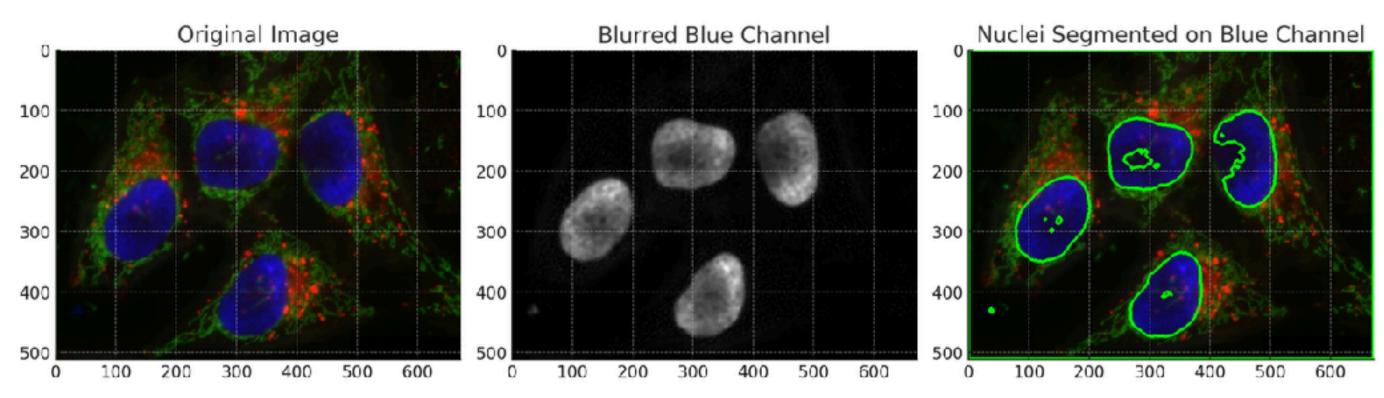
Save the output image with segmented nuclei output_path = '/mnt/data/hela-cells-segmented.jpg' cv2.imwrite(output_path, contoured_image)

🗂 Copy code

You

please use the blue channel for segmenting the nuclei

ChatGPT



the following steps:

- stained blue.
- reducing noise for thresholding.
- image where the nuclei are distinguished from the background.

The nuclei segmentation has been performed using the blue channel of the image with

The blue channel was extracted from the original image since the nuclei appear to be

Gaussian Blur was applied to the blue channel to smooth the image, which helps in

• Otsu's thresholding was then used on the blurred blue channel to create a binary

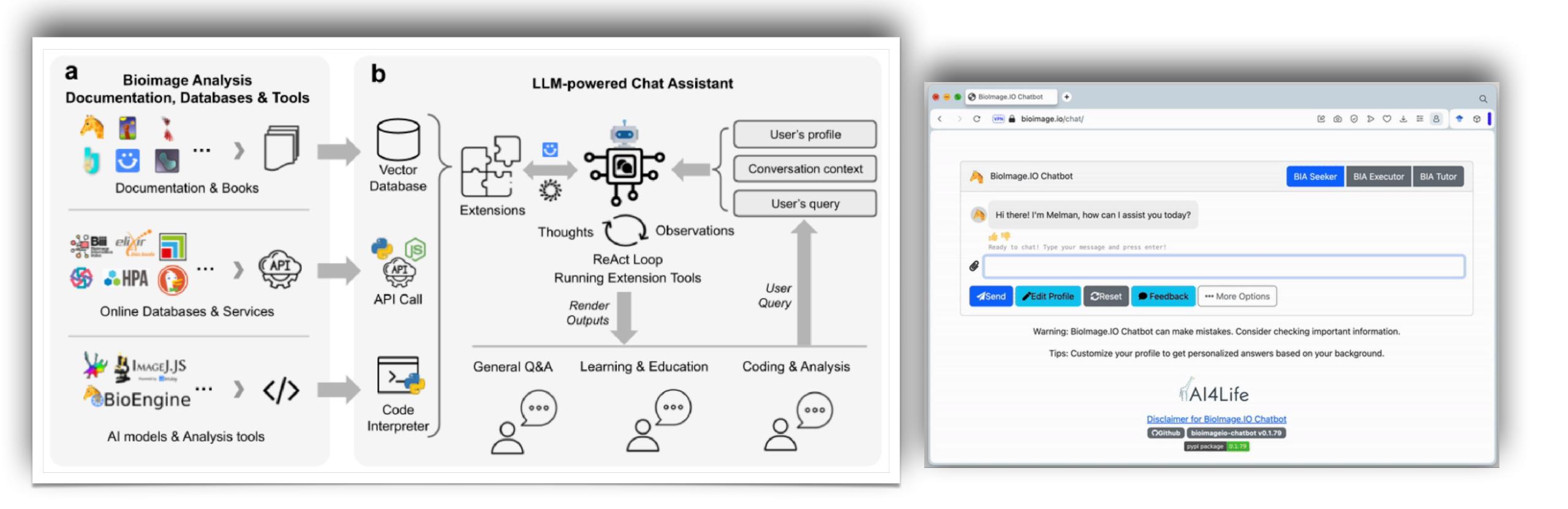
Using ChatGPT-4 for Image Analysis Here is the code that was used for this process:

blue_channel = image[:, :, 0]

Copy code python # Extract the blue channel, as the nuclei are stained with a blue dye # Apply GaussianBlur to the blue channel blurred_blue = cv2.GaussianBlur(blue_channel, (5, 5), 0) # Perform Otsu's thresholding on the blue channel _, blue_thresh = cv2.threshold(blurred_blue, 0, 255, cv2.THRESH_BINARY_ # Find contours on the thresholded blue channel contours_blue, _ = cv2.findContours(blue_thresh, cv2.RETR_TREE, cv2.CHA # Draw the contours on the original image to show the segmentation of n contoured_blue_image = image.copy() cv2.drawContours(contoured_blue_image, contours_blue, -1, (0, 255, 0),

41

Biolmage Chatbot



https://arxiv.org/abs/2310.18351

https://aicell.io/post/bioimageio-chatbot/

42

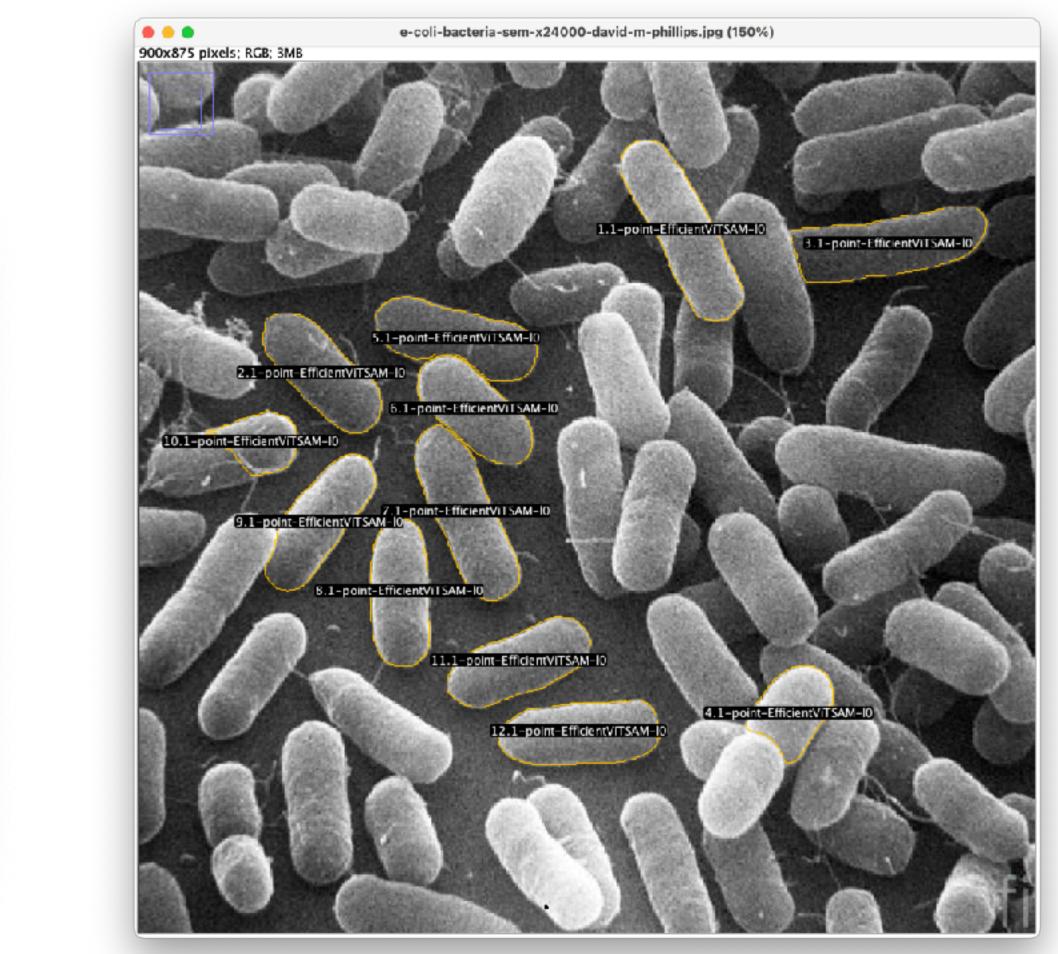
Segment Anything in ImageJ/Fiji

Released around March 14th, 2024 **Graphical User Interphase** No coding required

• •		SAM	IJ Annotator		
EfficientSAM	EfficientViTSAM-I0	EfficientViTSAM-I1	EfficientViTSAM-I2	EfficientViTSAM-xI0 Efficient	tViTSAM-
	Install			Uninstall	
Weights size: Speed: 1st out Performance:	of 6				
		m/mit-han-lab/efficientv Segment Anything Model	<u>it</u> I Without Performance L	<u>oss</u>	
				<u>0SS</u>	
Paper: Efficien	tViT-SAM: Accelerated S				
Paper: Efficien	tViT-SAM: Accelerated S	Segment Anything Mode	Without Performance L	Add to ROI Manager	

lelp

Example of point annotations



https://github.com/segment-anything-models-java/SAMJ-IJ

Image Analysis Workflow

• There are typically *five* steps in an image analysis

Think of this even *before* you acquire the images!

otherwise image analysis may become only a *post-mortem* on your experiment

Often a good idea to structure work along these lines before starting

Pre-processing

- Processing
- Data-wrangling in general
 - Image format conversion, incl. lossless compression
 - Renaming
- Restoration and Reconstruction
- Tomographic reconstruction
- Registration (3D stacks)
- Stitching (tiled images)
- Illumination correction
- Intensity normalisation
- Deconvolution

• • •

- Filtering (smoothing, sharpening, etc)
- Grayscale morphological operations
- Color deconvolution
- Channel alignment (chromatic aberrations)

Pre-processing

Processing

- Image Segmentation
 - Thresholding
 - Pixel Clustering
 - Edge detection
 - Region growing
 - Level set methods
 - Watershed
 - Model based
 - Multi-scale
 - Trainable pixel-classification
- Spot detection
- Tracking

• • •

- Size, shape, intensity
- Texture, location, neighbours
- Binary morphological operations

 - Hit-or-miss transform
 - . . .

• Filtering detected objects based on

- Open/close
- Skeletonise

• Object measures

Measuring

- Size, shape, intensity
- Texture, positions
- Local neighbourhood
- Image measures
 - Object count
 - Area covered
 - Total intensity
- Co-localisation
- •

- Exploratory data analysis
- Filtering of numerical data based on measured values
- Summary statistics
- Plotting numerical values
- Making movies and montages of images
- Record entire work-flow for later reference
 - Write down what you did and why (each step)
 - Use a version control system
 - Document your code

. . .

What about Deep Learning?

- Yes! But what you need to know may differ • Classification, segmentation, restoration, ... • Can you trust the results from other algorithms? • Have good controls, verify results!

- Do I still need to know about image analysis? What parts of image analysis can Deep Learning replace? Can I trust the results from Artificial Intelligence?

Processing vs. Analysis

Image Formation

object in \rightarrow image out

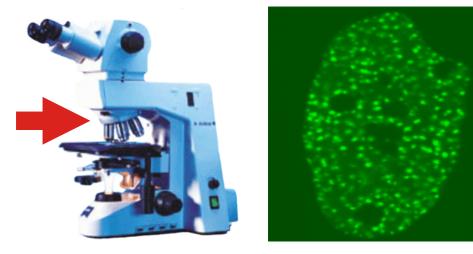
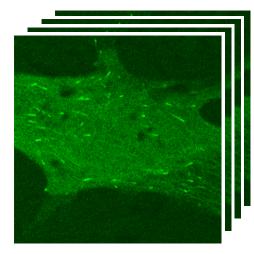
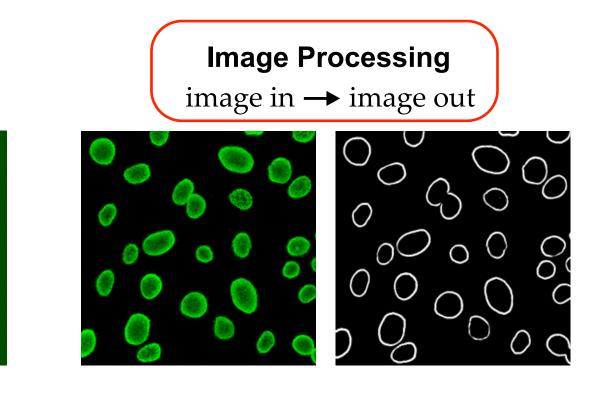


Image Analysis image in → features out											
	Obj	Area	Perim								
	1	324.2	98.5								
	2	406.7	140.3								
	3	487.1	159.2								
	4	226.3	67.8								
	5	531.8	187.6								
	6	649.5	203.1								
	7	582.6	196.4								
	8	498.0	162.9								
	9	543.2	195.1								

Computer Vision image in \rightarrow interpretation out

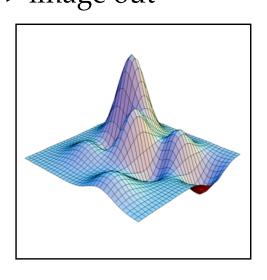


The series shows microtubule growth in a live neuron. The average speed of the distal ends is comparable in the cell body, dendrites, axons, and growth cones.

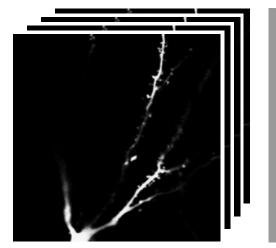


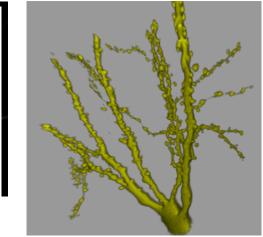
Computer Graphics numbers in \rightarrow image out

x	Y	I
-3.54	-2.32	0.50
-2.78	-1.90	0.12
-1.15	0.42	3.09
0.45	1.65	5.89
1.83	2.18	7.72
2.98	3.33	2.07
4.21	3.96	-4.58
5.62	4.54	-11.45
7.16	5.02	-3.63



Visualization image in \rightarrow representation out





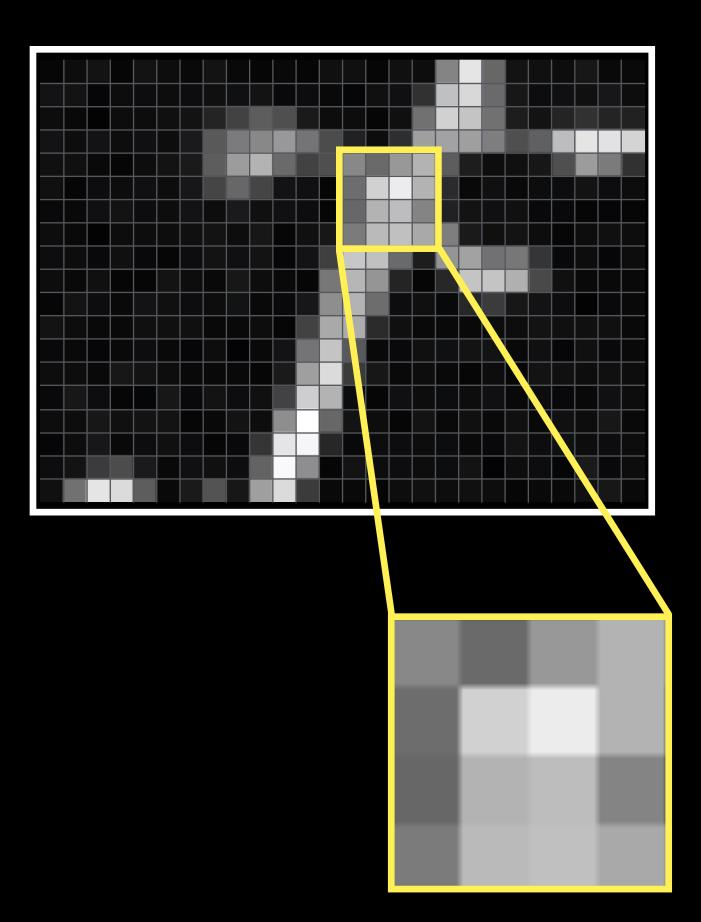
What we see...

... is not what we've got!

- Computer screens have 256 grey-levels (8-bit) • RGB: $256^3 = 16'777'216$ colours (24-bit, true-color) • This is about what the human eye can perceive
- Scientific images are often 16-bit = 65'536 grey-levels • The human eye can perceive less than that
- Your monitor shows less than 0.4% of what is in a good tiff-image

what is an image?

A digital image is a matrix of numbers!



Pixel = Picture Element

6	13	19	6	19	13	9	19	9	6	9	6	16	16	6	16	13	132	229	103	19	16	13	23	9	9
19	19	6	13	13	13	13	16	16	19	9	13	9	6	16	16	49	192	216	106	23	13	16	16	23	13
13	9	4	13	13	16	19	36	66	93	79	26	13	13	6	16	113	209	196	113	29	19	36	49	36	33
19	13	19	13	16	13	26	89	123	136	152	116	76	33	13	46	159	162	159	126	79	96	189	229	226	212
16	16	9	6	13	19	26	93	156	179	106	66	79	136	106	152	179	93	29	13	16	23	79	156	123	49
16	6	13	13	16	13	23	69	103	69	19	16	6	109	209	236	179	43	9	16	9	13	13	19	13	13
9	9	16	19	13	13	19	13	26	16	16	13	6	103	179	189	132	33	19	16	16	9	9	6	6	6
13	9	4	13	13	13	16	19	13	23	6	16	23	123	186	192	169	126	26	16	19	13	6	13	16	13
13	13	9	16	9	6	13	19	16	19	6	19	63	199	192	106	29	149	162	113	119	53	9	13	6	13
13	9	16	6	6	19	13	9	23	13	9	6	119	182	149	36	6	39	196	196	176	73	16	9	9	9
6	19	13	9	19	16	13	13	19	9	9	23	142	179	109	13	16	9	39	59	23	19	13	4	9	9
19	13	9	9	16	16	16	9	9	13	6	66	169	172	43	16	9	9	9	13	13	19	16	16	16	9
9	9	6	9	13	9	6	13	4	9	19	116	196	89	9	9	16	16	19	19	9	16	6	16	9	9
13	13	9	23	19	13	9	9	9	6	26	159	219	59	23	9	13	9	6	13	6	19	16	13	16	13
9	23	13	6	6	23	9	19	13	16	66	206	179	13	6	16	13	13	13	16	9	13	9	9	16	13
13	13	23	16	19	19	6	9	19	13	142	255	103	19	13	6	19	9	16	9	16	9	16	13	23	9
6	13	23	9	13	16	13	6	9	53	229	246	39	9	13	13	13	13	9	9	19	13	16	13	13	13
13	19	59	76	26	9	16	16	13	99	249	142	6	19	13	13	13	13	19	4	13	13	6	26	9	13
16	113	229	219	93	9	26	83	23	159	219	59	9	9	6	13	16	13	16	13	6	9	9	16	23	9

136	106	152	179
109	209	236	179
103	179	189	132
123	186	192	169

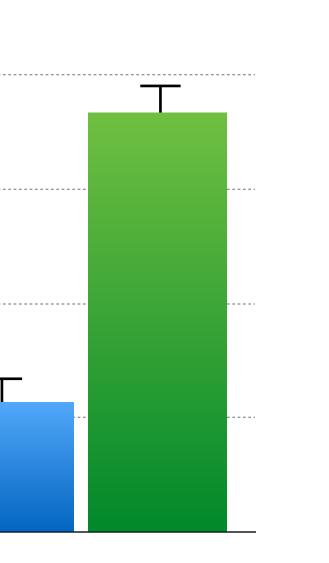
Images in publications and presentations should be used to **communicate** a finding... not **be** the finding

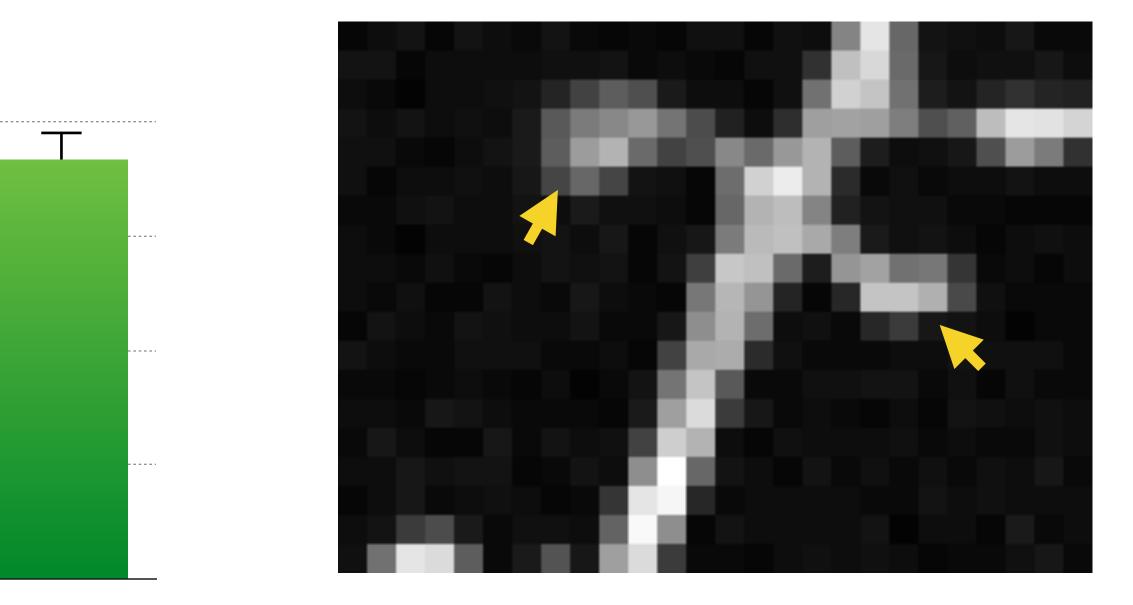
this is your data

6	13	19	6	19	13	9	19	9	6	9	6	16	16	6	16	13	132	229	103	19	16	13	23	9	9
19	19	6	13	13	13	13	16	16	19	9	13	9	6	16	16	49	192	216	106	23	13	16	16	23	13
13	9	4	13	13	16	19	36	66	93	79	26	13	13	6	16	113	209	196	113	29	19	36	49	36	33
19	13	19	13	16	13	26	89	123	136	152	116	76	33	13	46	159	162	159	126	79	96	189	229	226	212
16	16	9	6	13	19	26	93	156	179	106	66	79	136	106	152	179	93	29	13	16	23	79	156	123	49
16	6	13	13	16	13	23	69	103	69	19	16	6	109	209	236	179	43	9	16	9	13	13	19	13	13
9	9	16	19	13	13	19	13	26	16	16	13	6	103	179	189	132	33	19	16	16	9	9	6	6	6
13	9	4	13	13	13	16	19	13	23	6	16	23	123	186	192	169	126	26	16	19	13	6	13	16	13
13	13	9	16	9	6	13	19	16	19	6	19	63	199	192	106	29	149	162	113	119	53	9	13	6	13
13	9	16	6	6	19	13	9	23	13	9	6	119	182	149	36	6	39	196	196	176	73	16	9	9	9
6	19	13	9	19	16	13	13	19	9	9	23	142	179	109	13	16	9	39	59	23	19	13	4	9	9
19	13	9	9	16	16	16	9	9	13	6	66	169	172	43	16	9	9	9	13	13	19	16	16	16	9
9	9	6	9	13	9	6	13	4	9	19	116	196	89	9	9	16	16	19	19	9	16	6	16	9	9
13	13	9	23	19	13	9	9	9	6	26	159	219	59	23	9	13	9	6	13	6	19	16	13	16	13
9	23	13	6	6	23	9	19	13	16	66	206	179	13	6	16	13	13	13	16	9	13	9	9	16	13
13	13	23	16	19	19	6	9	19	13	142	255	103	19	13	6	19	9	16	9	16	9	16	13	23	9
6	13	23	9	13	16	13	6	9	53	229	246	39	9	13	13	13	13	9	9	19	13	16	13	13	13
13	19	59	76	26	9	16	16	13	99	249	142	6	19	13	13	13	13	19	4	13	13	6	26	9	13
16	113	229	219	93	9	26	83	23	159	219	59	9	9	6	13	16	13	16	13	6	9	9	16	23	9

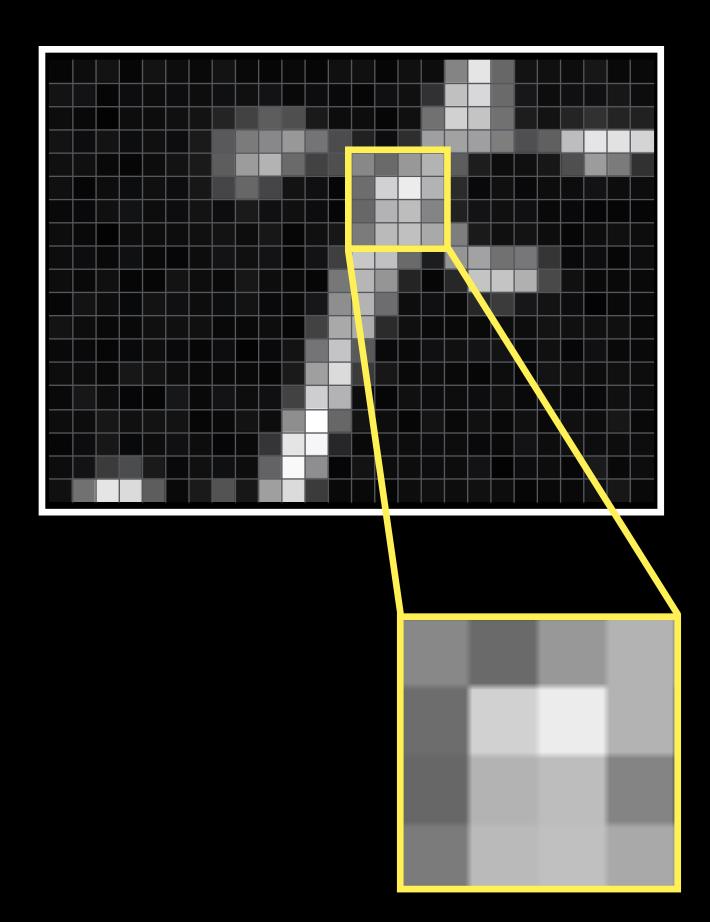
this is your **result**

this just helps to communicate the result





A digital image is a matrix of numbers!



Where do these number come from?

6	13	19	6	19	13	9	19	9	6	9	6	16	16	6	16	13	132	229	103	19	16	13	23	9	9
19	19	6	13	13	13	13	16	16	19	9	13	9	6	16	16	49	192	216	106	23	13	16	16	23	13
13	9	4	13	13	16	19	36	66	93	79	26	13	13	6	16	113	209	196	113	29	19	36	49	36	33
19	13	19	13	16	13	26	89	123	136	152	116	76	33	13	46	159	162	159	126	79	96	189	229	226	212
16	16	9	6	13	19	26	93	156	179	106	66	79	136	106	152	179	93	29	13	16	23	79	156	123	49
16	6	13	13	16	13	23	69	103	69	19	16	6	109	209	236	179	43	9	16	9	13	13	19	13	13
9	9	16	19	13	13	19	13	26	16	16	13	6	103	179	189	132	33	19	16	16	9	9	6	6	6
13	9	4	13	13	13	16	19	13	23	6	16	23	123	186	192	169	126	26	16	19	13	6	13	16	13
13	13	9	16	9	6	13	19	16	19	6	19	63	199	192	106	29	149	162	113	119	53	9	13	6	13
13	9	16	6	6	19	13	9	23	13	9	6	119	182	149	36	6	39	196	196	176	73	16	9	9	9
6	19	13	9	19	16	13	13	19	9	9	23	142	179	109	13	16	9	39	59	23	19	13	4	9	9
19	13	9	9	16	16	16	9	9	13	6	66	169	172	43	16	9	9	9	13	13	19	16	16	16	9
9	9	6	9	13	9	6	13	4	9	19	116	196	89	9	9	16	16	19	19	9	16	6	16	9	9
13	13	9	23	19	13	9	9	9	6	26	159	219	59	23	9	13	9	6	13	6	19	16	13	16	13
9	23	13	6	6	23	9	19	13	16	66	206	179	13	6	16	13	13	13	16	9	13	9	9	16	13
13	13	23	16	19	19	6	9	19	13	142	255	103	19	13	6	19	9	16	9	16	9	16	13	23	9
6	13	23	9	13	16	13	6	9	53	229	246	39	9	13	13	13	13	9	9	19	13	16	13	13	13
13	19	59	76	26	9	16	16	13	99	249	142	6	19	13	13	13	13	19	4	13	13	6	26	9	13
16	113	229	219	93	9	26	83	23	159	219	59	9	9	6	13	16	13	16	13	6	9	9	16	23	9

136	106	152	179
109	209	236	179
103	179	189	132
123	186	192	169

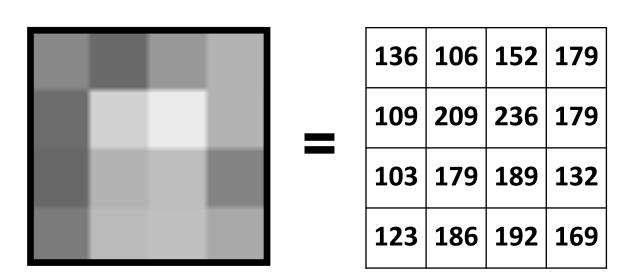
109	209	23
103	179	18
123	186	19

Bit depth

Detectors in Fluorescence Microscopy

The detectors used in <u>fluorescence microscopy</u> are **monochromatic**.

separate your fluorophores.



- Microscope cameras are not able to distinguish between different wavelengths (they just collect photons), you need fluorescence filters to
- The detector converts photons in digital numbers (linear relation).
 - Each pixel in the digital image has **one digital** value that depends on the intensity of the signal emitted by the **sample**.
 - Digital Values = Pixel Intensity Value
 - The range of possible digital values is defined by the bit depth.

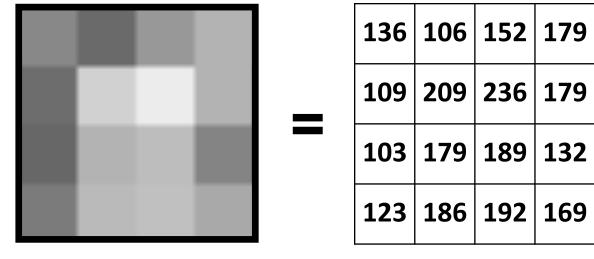
Bit Depth

The **bit depth** defines the range of possible **digital values** that each pixel can have, usually 8, 12 or 16 bit.

The **bit depth** is expressed in **grey values**.

bit depth of the **image** = **bit depth** of the **detector** (Unless you change that during acquisition)

x bit = a range of 2^X grey values

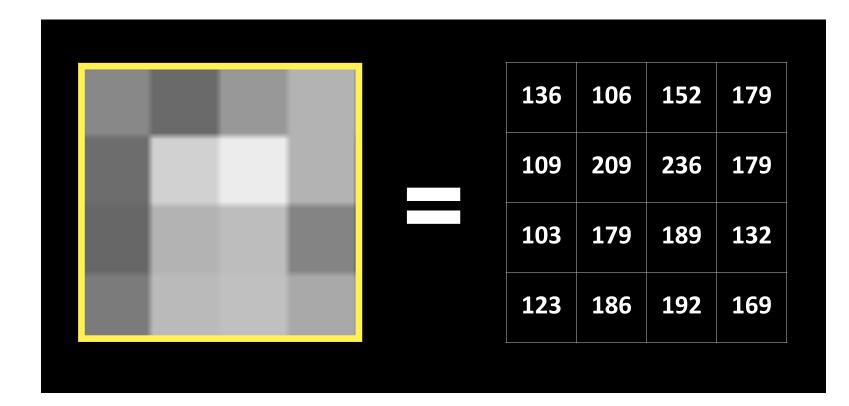


8 bit image = each pixel can have 2⁸ grey values = 256 grey values = range 0-255 12 bit image = each pixel can have 2^{12} grey values = 4096 grey values = range 0-4095 16 bit image = each pixel can have 2^{16} grey values = 65536 grey values = range 0-65535

Digital Value = Pixel Intensity Value = Grey Value

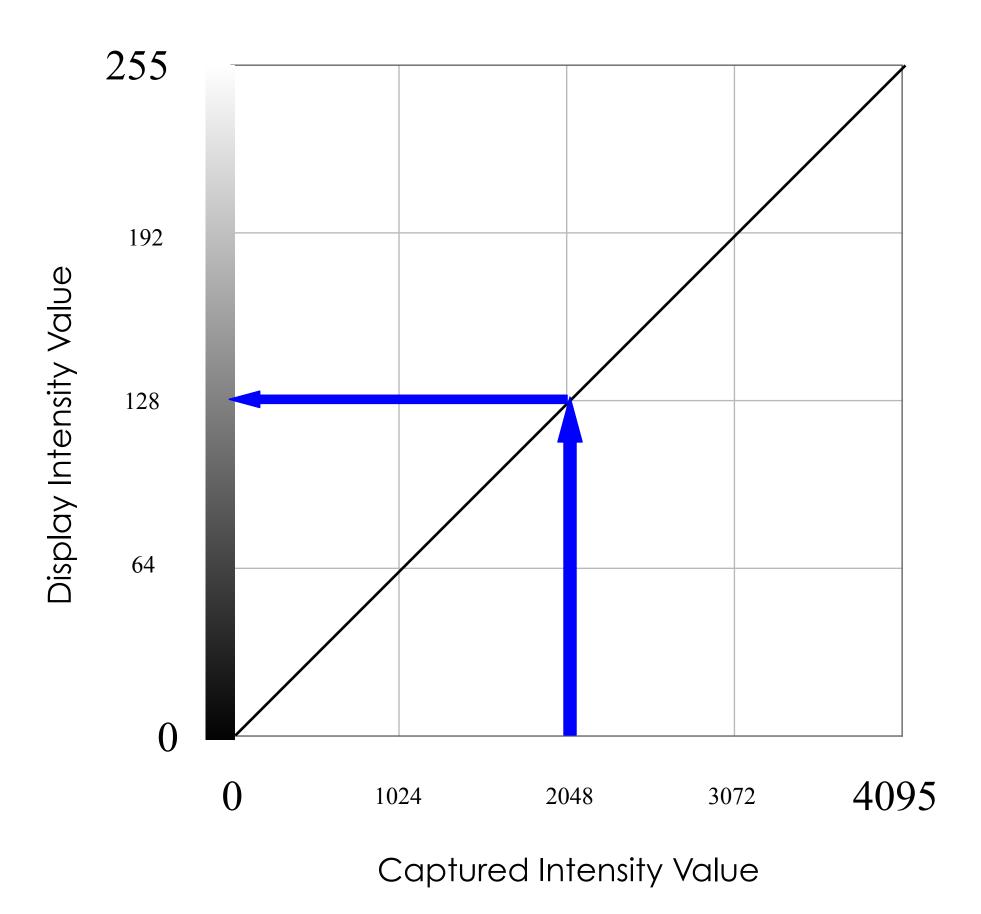
Mapping Image Intensity to Monitor Intensity (LookUp Tables)

LUT = how the grey values are <u>displayed</u>

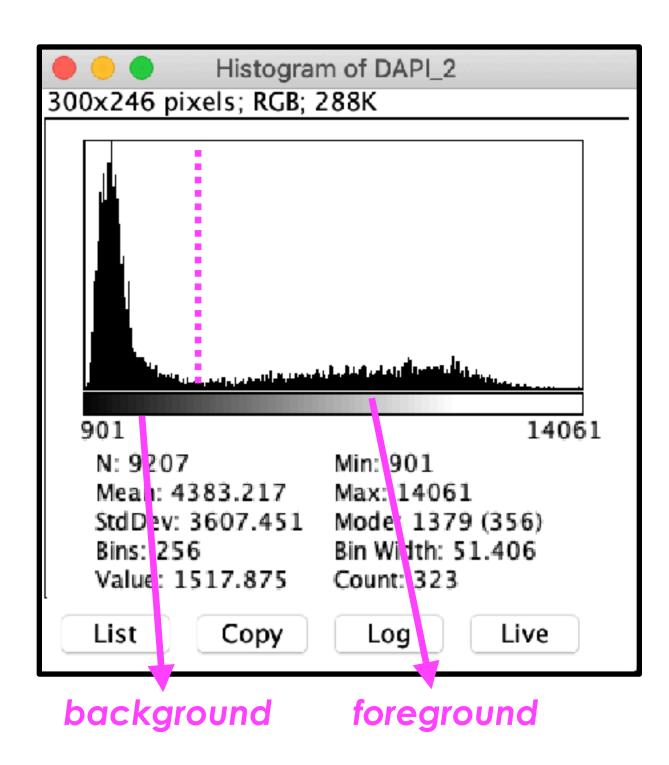


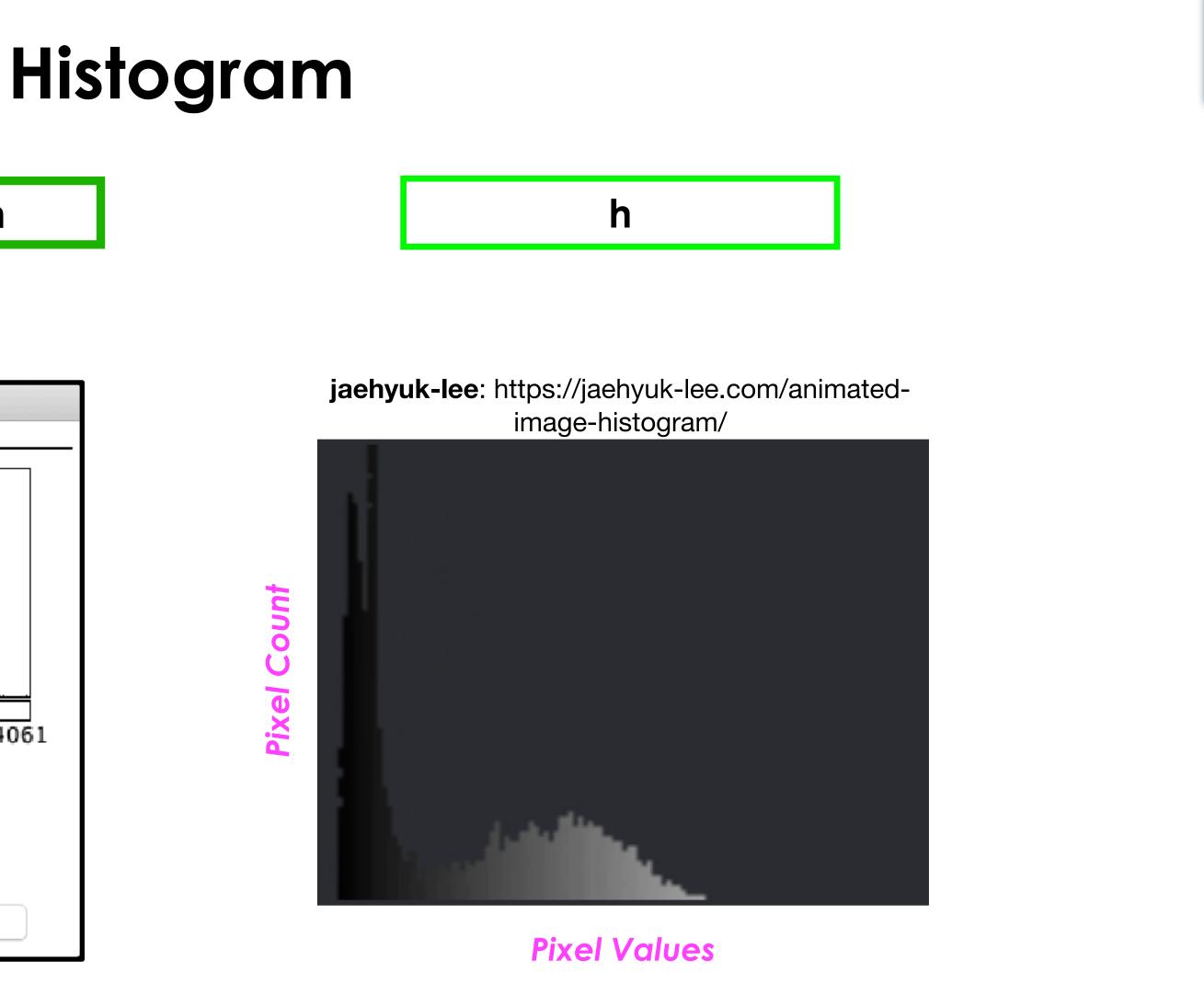
the second of the second se	lmage (12 bit)	Displayed color
	0	
225	1	•
	•••	
mar L. Sol	2000	ちてい
THE F.	•••	
E. S.	4095	

<u>LUTs do not change the pixel values</u>

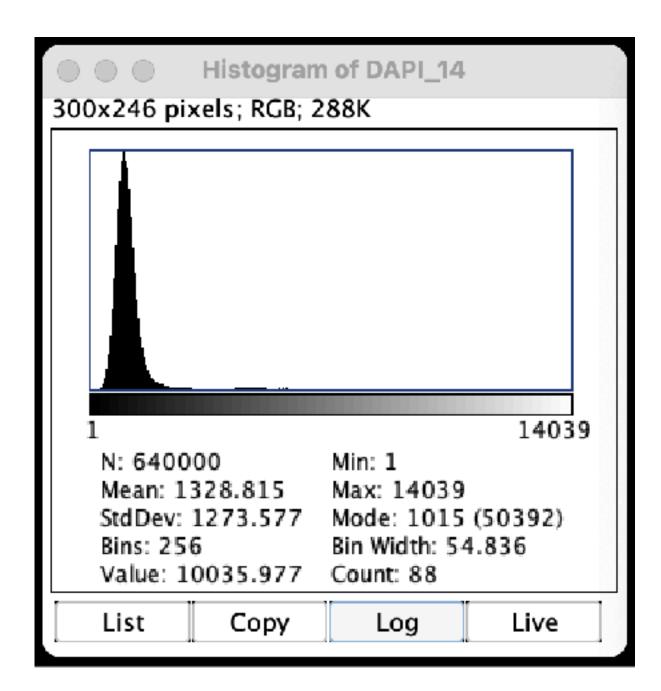


Analyze > Histogram





Analyze > Histogram



Fiji auto-adjust the range (default option)

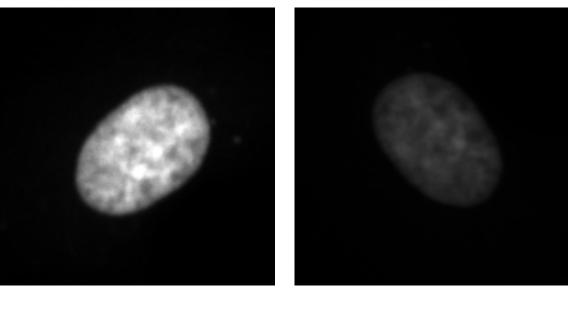
Histogram

Histogram 300x246 pixels; RGB; 2	n of DAPI_14 288K
300x246 pixels; KGB; A 0 N: 640000 Mean: 1328.815 StdDev: 1273.577 Bins: 256 Value: List Copy	65535 Min: 1 Max: 14039

Bit depth

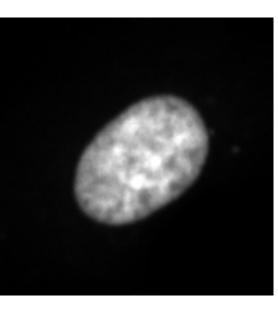
Display a file: Brightness & Contrast

Which image has more fluorescence?



Mean:	4803	
Display range:	188- 16828	

Mean:	4803	
Display range:	188- 16828	

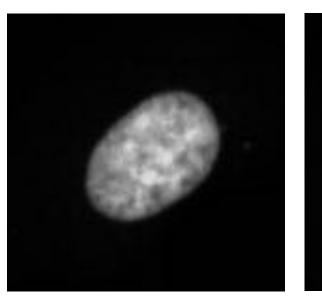


4803

188-16828

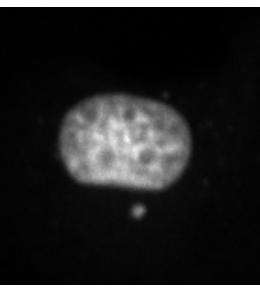
Display a file: Brightness & Contrast

Which image has more fluorescence?



Mean:	4803	
Display range:	188- 19540	

Mean:	4803	
Display range:	188-1 9540	



188-**19540**

Do NOT trust your eyes, Do NOT trust your eyes, rely on numbers!

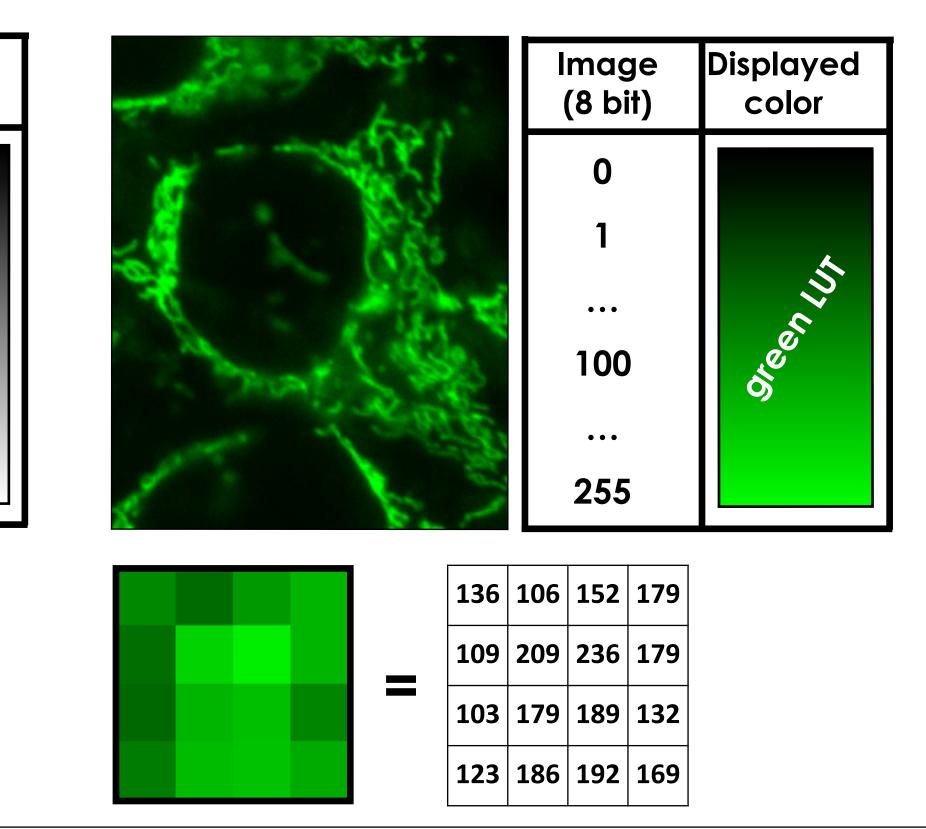
Images and Colors

LUT = how the grey values are <u>displayed</u>

<u>LUTs do not change the pixel values</u>

		_			
- the second			lma (8 b	-	Displayed color
·			0		
			1		
	-		•••		
in the second	23		10	C	1) 1) 1) 1) 1) 1)
1 - 2 - 83	in the		•••		
	191		25	5	
	136	106	152	179	
	109	209	236	179	
	103	179	189	132	
	123	186	192	169	

Lookup Tables (LUTs)



0 \frown

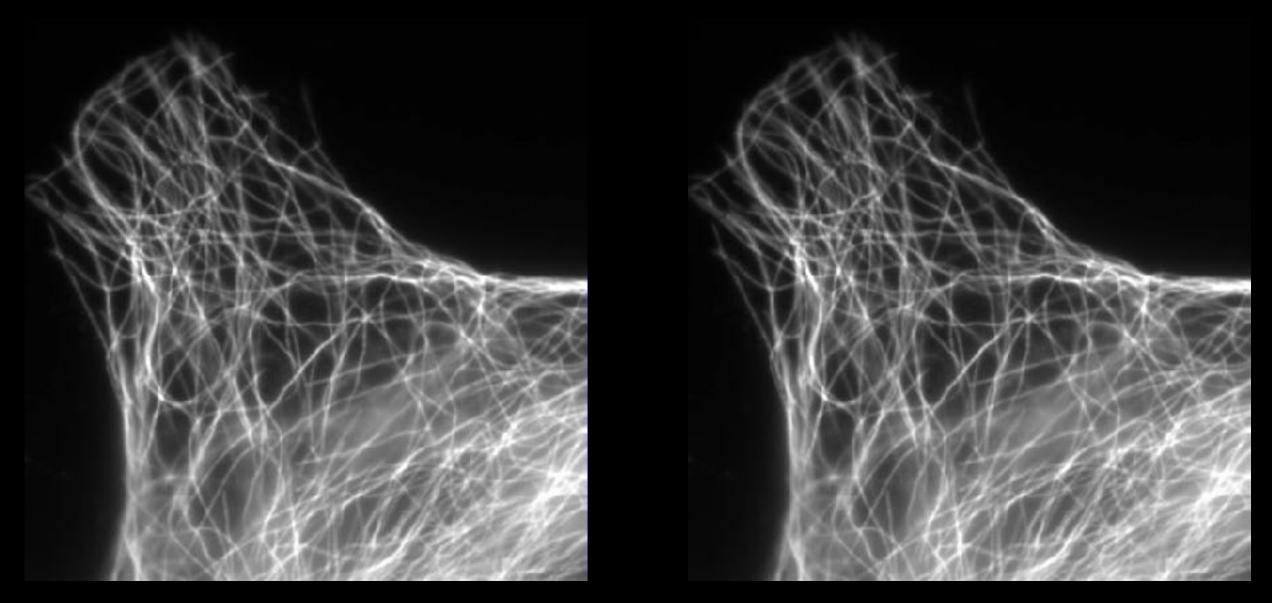
Image Analysis Collaboratory

CITE

Images and Colors

Choose the right LUT

Which is brighter?



The human eye evaluates intensity best in grayscale

If you are imaging for example a blue fluorophore, you are <u>NOT FORCED</u> to display it in blue!

Images and Colors

Color blind people don't distinguish some colors

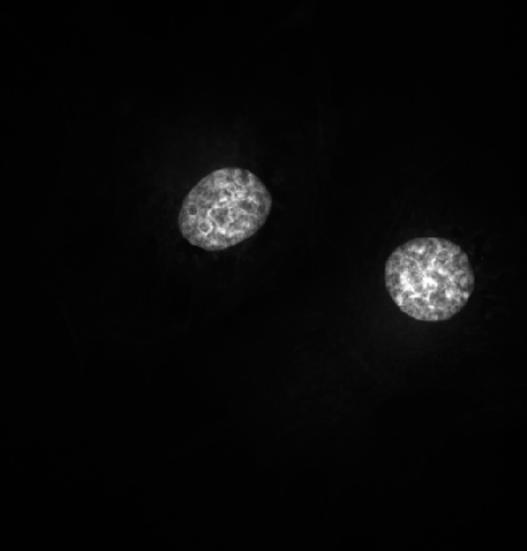
POINTS OF VIEW

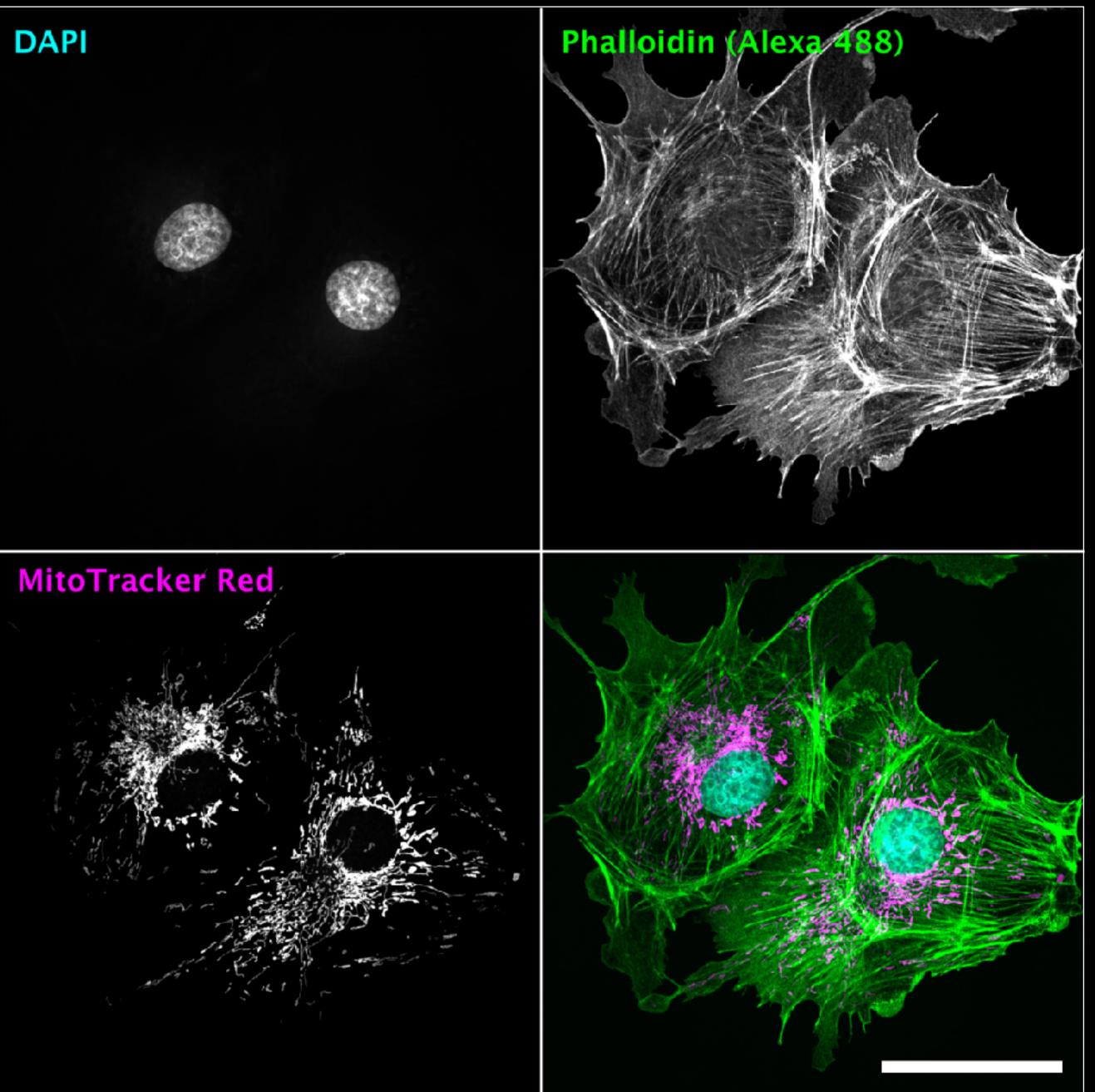
Color blindness

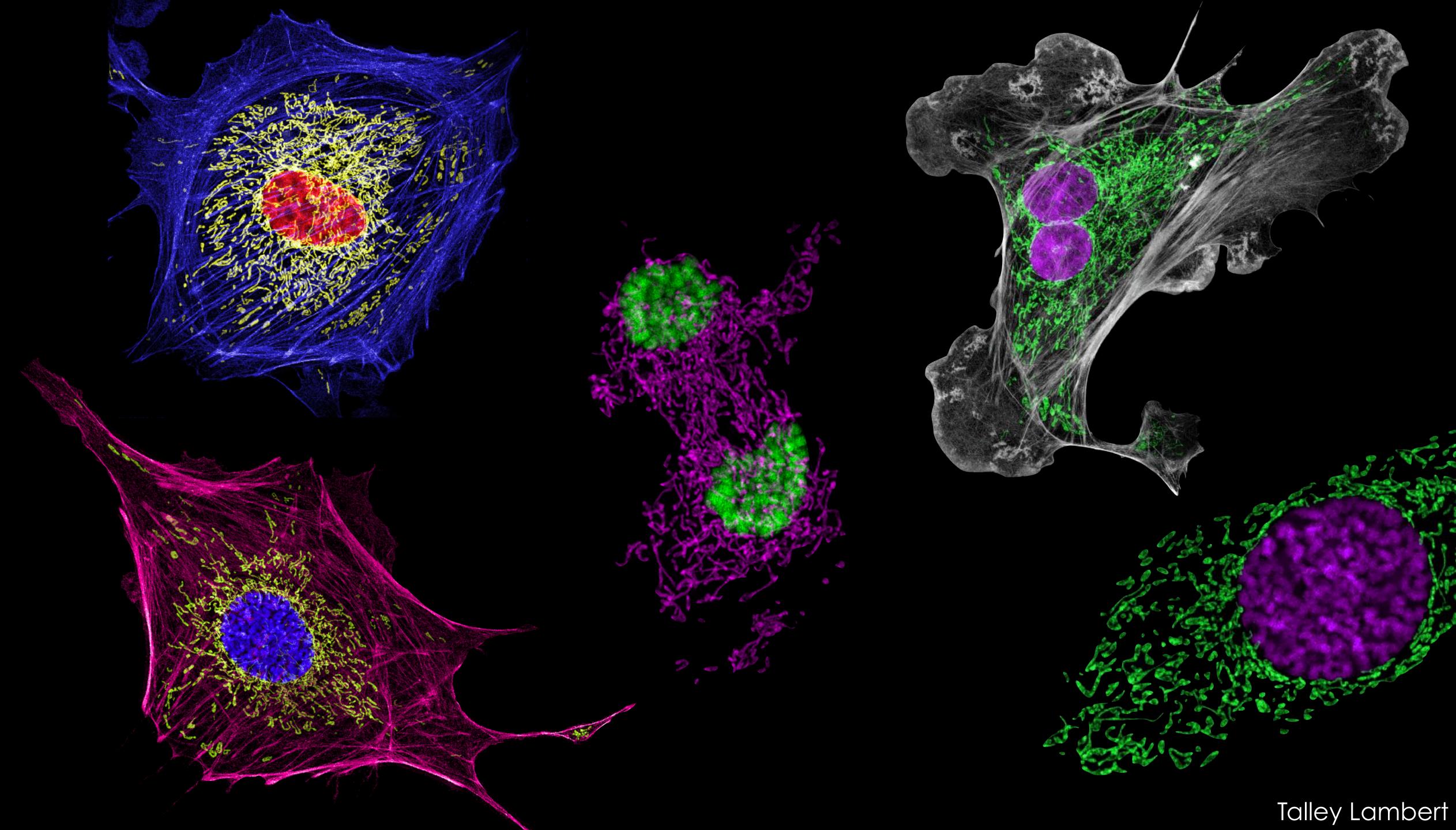
NATURE METHODS | VOL.8 NO.6 | JUNE 2011 | 441

"If a submitted manuscript happens to go to three male reviewers of Northern European descent, the chance that at least one will be color blind is 22 percent"

Choose the right LUT







Further Learning (<u>https://iac.hms.harvard.edu/resources/</u>)

- https://forum.image.sc/ \bigcirc
- **Online book with code**: Introduction to Bioimage Analysis
 - https://bioimagebook.github.io/ \bigcirc
- **Online training**: NEUBIAS Academy
 - https://eubias.org/NEUBIAS/training-schools/neubias-academy-home/ \bigcirc
 - https://www.youtube.com/c/NEUBIAS
- **Fiji manual** from Monash University
 - \bigcirc 20033513

Forum: Knowledge exchange and support

https://bridges.monash.edu/articles/educational resource/Fiji Training Manual v6 4 /

